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ABSTRACT

With the rapidly increasing complexity of hardware, traditional validation techniques

are becoming insufficient. This has led to a substantial interest in the formal verification

of digital components. There has been relatively little research, however, into the appli-

cation of formal verification methods to the analog/mixed-signal domain. Therefore, the

overall goal of this work is to provide a system for efficient and meaningful analysis of

analog/mixed-signal circuits. This encompasses two major efforts: modeling and symbolic

analysis.

The continuous nature of analog circuits requires a modeling method that is capable

of representing continuous behavior and the discrete nature of digital circuits requires a

modeling method that is capable of representing discrete behavior. This dual requirement

necessitates a hybrid model—a model that can simultaneously represent continuous and

discrete behavior. This work details the development of a specialized hybrid Petri net

model with capabilities similar to hybrid automata.

Analysis is greatly complicated by the addition of continuous behavior to the model.

To help alleviate this, infinite numbers of states are often grouped into equivalence classes

represented by symbolic structures. The analysis methods described here represent ranges

of continuous variables using groups of inequalities which are then either mapped to Bi-

nary Decision Diagram variables so that necessary operations can be performed efficiently,

or handed over to an advanced Satisfiability Modulo Theories solver for analysis.

After describing the verification system in detail, experiences applying the techniques

to several case studies are described and performance results are provided.
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CHAPTER 1

INTRODUCTION

1.1 Context

Society increasingly relies on computing devices for common tasks. Often these tasks

are safety-critical. Motor vehicles contain up to a hundred computing devices for control-

ling everything from anti-lock break systems to the windshield wipers. Medical devices

for monitoring patients as well as performing life-saving procedures rely on computing

devices and specialized sensors. With this dependence on technology, it is increasingly

important that the computing devices that we rely on for so many tasks operate according

to specification.

The approaches to ensuring that the computing devices operate correctly vary de-

pending on the type of device. Computing devices come in a range of flavors including

complex microprocessors with millions of transistors performing mainly binary calcula-

tions, embedded systems that are capable of performing digital or analog operations and

run specialized software, and field programmable gate arrays (FPGAs) which can be

programmed on the fly to perform specific tasks. Analog and digital circuits are increas-

ingly integrated within computer systems allowing for processing of analog signals using

digital circuits. In fact, advances in technology have resulted in the integration of digital

and analog circuits on the same integrated circuit (IC). Additionally, circuits on these

ICs can be both analog and digital. These circuits are known as mixed-signal circuits.

This dissertation focuses on a methodology for validating analog and mixed-signal (AMS)

circuits.

Currently, to remove flaws that are introduced during the design process, simulation

and testing methods are used to validate circuit behavior. In simulation, theoretical paths

through the model are executed to approximate the actual behavior. In testing, specially

designed test cases are applied to the actual system under appropriate environmental

conditions to ensure proper behavior. Analog circuit validation is typically performed

using SPICE-level simulations, and mixed-signal validation can be done using VHDL-
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AMS or Verilog-AMS simulation though it is often done in a more ad hoc way. While

simulation and testing are often sufficient, they rarely test the full functionality and

interactions of the system instead focusing on particular corner cases.

In the AMS circuit domain, there are additional reasons for unexpected behavior.

These errors are primarily due to the fact that in ICs individual devices built on the

semiconductor chip can vary widely in value chip to chip depending on the manufacturing

process. These variances are uncontrollable by the designer, whereas during board level

design, components are tested and binned according to value. Furthermore, depending on

doping gradients, device properties can vary across each individual IC. Specialized design

techniques like using ratios of resistors, using devices with matched sizes, and using large

devices so that the statistical variations become insignificant can help to account for these

issues.

These additional sources of error further necessitate the need for techniques to ensure

that AMS circuits adhere to design specifications. To attempt to account for variations

introduced during the manufacturing process, Monte Carlo or random simulations are

often performed. However, it has been cited that digital and analog circuits are integrated

in about 75 percent of chips designed today and that 50 percent of the errors in these

chips are due to problems in the analog portion [52]. Therefore, further improvements in

AMS circuit validation methodology are very important.

1.2 Formal Verification

There are two main categories of formal verification: logical inference and model

checking. Logical inference relies on formal mathematical proofs to reason about the

system. Theorem proving software tools are often used to help automate the process [23],

but logical inference is a time-consuming process that normally requires a verification

expert with considerable mathematical experience. In model checking, a property is

tested against a model of a system [27]. Construction of the system models and properties

can be a manual process but is often and ideally automated. Model checking utilizes

nondeterminism and state space exploration methods (calculation of all possible reachable

states) to validate designs over a range of parameters and initial conditions simultane-

ously. Nondeterminism in the models used for model checking even allows conditions to

change over the course of the execution. These techniques, therefore, provide a promising

mechanism to validate designs in the face of noise and uncertain parameters.
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Model checking often encounters the state space explosion problem—so many states

are found that the resources of the computer (specifically memory) are fully depleted. To

avoid this, specialized model checking methods have been developed that utilize symbolic

execution and/or abstraction. In symbolic analysis methods, arbitrary symbols are used

to represent ranges of values with the goal of making state space exploration more efficient

by reducing the size of the state representation. In the digital circuit verification domain,

Boolean methods such as binary decision diagrams (BDDs) [22] and SAT solvers [35, 36]

are often used to compactly and symbolically represent Boolean functions and perform

Boolean operations. Abstraction is a general technique that groups several similar states

into a single state by allowing additional behavior. For example, in Figure 1.1, the

irregularly shaped light gray polygon over the variables x and y can be much more

efficiently represented by encapsulating it in the dark gray polygon. This sometimes

introduces false negatives, i.e., errors that cannot really occur. Therefore, it is necessary

to have methods that determine if an error is false and to adjust the abstraction as

necessary to prevent the false error from occurring allowing for verification to proceed.

This process is known as abstraction refinement.

1.3 Hybrid System Verification

Hybrid systems are systems that contain both continuous and discrete behavior. AMS

circuits fall into this category where the discrete behavior corresponds to the digital

components of the circuit and the continuous behavior corresponds to the analog portions

of the circuit. Significant research has been done in the modeling and verification of

x

y

Figure 1.1. Intuition behind abstraction.
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general hybrid systems. Much of the work described in this dissertation is based on

previous work done in the hybrid system domain. A large array of tools has been

developed for exploring the state space of hybrid systems; however, they differ widely

in input models, capabilities, and methods used. Table 1.1 provides a listing of several

of these tools [67]. Some of the tools use an exact reachability method while others use

symbolic methods. Additionally, the tools can be differentiated by their conservativeness

or exactness. Conservative tools find additional behavior that actually do not occur in the

hybrid system, whereas exact tools perform state space explorations without introducing

additional behavior.

The tool d/dt [31, 13, 14] relies on a method called face-lifting to create over approx-

imate collections of orthogonal polyhedra representing the linear dynamics of the system.

An efficient data structure is used for representing and operating on the polyhedra.

Reachability is performed by iteratively performing face-lifting on the current set of

states for some time step ∆T . The tool verifies that the set of reachable states does

not intersect with a set of user specified bad states. Additionally, this tool supports

systems with nondeterminism in the initial conditions and/or dynamics.

Another tool that can analyze hybrid systems is RED [70]. This tool was originally

designed to analyze timed automata using clock-restrictions diagrams (CRDs) but has

Table 1.1. Hybrid analysis tool features.

Property
Tool Model Type Data Structures Precision Specification
d/dt LDHA Polyhedra Conservative Safety
RED LHA HRDs Exact Safety
CheckMate SimuLink/LHA Polyhedra Conservative ACTL
TReX CA, TA SREs, CPDBMs Exact Safety
ATACS-DBM LHPNs DBMs Conservative ACTL
HyTech LHA Polyhedra Exact Safety
PHAVer LHA Polyhedra Exact/Cons. Safety
TMV TA BDDs Exact TCTL/Tµ
ATACS-BDD LHPNs BDDs Conservative TCTL/Tµ
ATACS-SMT LHPNs SMT Exact Safety
LHA = linear hybrid automata, LDHA = linear dynamical hybrid automata, CA =
counter automata, TA = timed automata, LHPN = labeled hybrid Petri net, DBM =
difference bound matrix, BDD = binary decision diagram, HRD = hybrid restriction
diagram, SRE = simple regular expression, CPDBM = constrained parametric DBM
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now been extended to analyze hybrid automata (HA) using an algorithm similar to

other tools. This tool mainly contributes a new BDD-like data structure called Hybrid

Restriction Diagrams (HRDs) to represent sets of convex polyhedra. HRDs are different

from BDDs because the nodes contain LH-expressions and the arcs are labeled with

LH-upperbounds. LH-expressions are of the form
∑

i aixi and LH-upperbounds are of

the form (∼, c) where ∼∈ {≤, <} and c is a rational number or ∞. A mapping from

LH-expressions to LH-upperbounds defines a convex polyhedron.

CheckMate [25, 26, 66] is another hybrid analysis tool dealing specifically with thresh-

old event driven hybrid systems (TEDHSs), a class of linear hybrid systems. A model

is constructed using Matlab Simulink and then CheckMate constructs an equivalent

polyhedral invariant hybrid automaton that is analyzed and verification properties are

specified using ACTL.

TReX [2, 9, 10] is an extensible symbolic analysis tool that operates on any symbolic

data structure that has a symbolic successor/predecessor function and extrapolation

procedure. Currently, the tool includes simple regular expressions (SREs) for modeling

unbounded lossy FIFO-channels and constrained Parametric Difference Bound Matrices

(PDBMs) for representing counter/clock automata.

ATACS-DBM [54] is an analysis tool developed specifically for the labeled hybrid Petri

net (LHPN) modeling method. This tool is based on work in [19] and uses difference-

bound matrices (DBMs) containing integer values to represent the continuous portion of

the state space and relationships among clocks. In order to handle continuous behavior, a

new method of warping DBMs based on rates of continuous variables is applied. However,

this warping method and the use of integers introduce approximation into the algorithm.

Additionally, it has the limitation of supporting only single rates on continuous variables.

The theoretical foundation for the analysis method that is described in this thesis

is the work of Henzinger et al. [50] for timed automata. This work introduced timed

µ-calculus (Tµ) for specifying properties of real-time systems, represented states using

separation logic (SL) which are Boolean combinations of Boolean variables and predicates,

and performed a symbolic analysis by quantifying over SL and computing fix points using

state predicates. These methods were later extended for use with linear hybrid automata

(LHA) in the tool HyTech [51, 7].

The current state of the art tool for analyzing linear hybrid automata is PHAVer

[40] which uses similar methods as those used by HyTech. PHAVer allows for unlimited
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precision values and relies on the Parma Polyhedra Library which allows for exact com-

putations with nonconvex polyhedra for its state space representation [15]. This tool also

introduces the use of novel abstraction and approximation methods such as limiting the

number of bits in the arithmetic representation and limiting the number of constraints.

The work of Henzinger is expanded upon by Seshia et al. [64, 65] in the development

of the tool TMV. TMV relies on BDDs to represent the state space when verifying

timed automata. As the analysis proceeds, predicates are created on the fly and mapped

to BDD variables resulting in a Boolean encoding of SL formulas. Thus, the problem

of quantifying over separation logic formulas with real variables has been reduced to

quantifying over Boolean variables. When compared to other tools for analyzing timed

automata, TMV performs quite well because of the use of BDDs. When analyzing larger

systems, however, the creation of a large number of BDD variables requires significant

amounts of memory.

ATACS-BDD and ATACS-SMT are the tools described in this dissertation. The

methods used by ATACS-BDD and ATACS-SMT extend existing methods by supporting

continuous variables that can change at any rate within a range in order to allow for the

symbolic model checking of AMS circuits.

1.4 Analog Circuit Verification

To date, there has been relatively little research in the formal verification of AMS

circuits. Perhaps the first work in this area is from Kurshan and McMillan in which analog

circuits are represented as finite state models [53]. Hartong et al. verify analog circuits by

dividing the continuous state space into regions that are represented in a Boolean manner

[45]. This allows them to perform verification using standard Boolean-based approaches

though with some loss of accuracy.

Tools for verifying hybrid systems have also been adapted to verify AMS circuits.

Gupta et al. utilize their verification tool, CheckMate, to verify analog circuits such as a

tunnel diode oscillator and a delta-sigma modulator [44]. In [30], Dang et al. use their

tool, d/dt, to verify a biquad low-pass filter. These last two methods are very accurate

but also very computationally complex. In [41], Frehse et al. use PHAVer to verify analog

oscillator circuits. These approaches, however, require a user to describe an AMS circuit

using a hybrid automaton which is unfamiliar to most AMS circuit designers. In [55],

Little et al. adapt use the ATACS-DBM tool which uses a zone-based algorithm, for
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the verification of AMS circuits. This method, however, supports only constant rates

of change for the continuous variables and conservatively abstracts the continuous state

space.

This dissertation describes two new model checking algorithms for the verification of

AMS circuits. The model checkers have been developed to operate on the LHPN model

which is then converted into a symbolic representation referred to as the symbolic model

for analysis. The first model checker, ATACS-BDD, uses Boolean variables to represent

the state space symbolically and performs a conservative state space exploration. The

second model checker, ATACS-SMT, maps the symbolic model into a Satisfiability Modulo

Theories (SMT) checker to perform a bounded state space exploration.

1.5 Contributions

Boolean methods can be used for the efficient formal verification of AMS circuits by

mapping inequalities over real variables to Boolean variables and representing the state

space as conjunctions and disjunctions of those Boolean variables.

The research described in this dissertation results in new methods and tools necessary

for the formal verification of AMS circuits. Specifically, there are five main contributions:

a hybrid modeling method for AMS circuits, generation of a symbolic model suitable for

analysis, a Boolean based analysis method and implementation that uses BDDS, an SMT

based analysis method, and demonstration of these methods on a several case studies.

The first contribution is the development of a hybrid system modeling method that

is specially suited for modeling of AMS circuits. By developing a specialized modeling

method for AMS circuits, our goal is to provide designers with an automated method of

modeling based on their traditional design methodologies. Additionally, by customizing

the model to the application, we can ensure that the model is expressive enough to analyze

interesting properties and not too expressive to reduce the size and complexity of the

systems that are analyzable. Specifically, the syntax and semantics for the LHPN model

are formally introduced and methods for generating LHPNs are described. Specifically,

approaches for generating LHPNs from VHDL-AMS and LHA are presented. Addition-

ally, methods for approximating differential equations using LHPNs are described.

The second contribution is the method for generating a symbolic model from LH-

PNs. This step is required so that the two model checking algorithms described in this

dissertation can be applied to LHPN models.
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The third contribution is the development of a BDD based model checker. The

model checking algorithm described performs a state space exploration of the provided

models and determines if given properties are satisfied in every state. The algorithm

maps inequalities over real variables to BDD variables and then uses BDD operations

in combination with constraint generation to perform the state space exploration. The

presented algorithm is novel because of its capability to allow for real variables to change

at ranges of rates while still relying primarily on BDD operations. However, the neces-

sity to frequently create constraints to maintain exactness results in poor performance.

Therefore, significant effort was devoted to applying constraints in an efficient manner,

resulting in an approximate algorithm with improved performanced. Additionally, more

efficient methods were developed to to reduce the numbers of BDD variables that are

created and thus the potential maximum BDD sizes.

The fourth contribution is the development of an SMT based bounded model checker.

The model checking algorithm described utilizes elements of the BDD based model checker

to construct SMT assertion statements which are then used to perform analysis over a

specified set of iterations.

The fifth contribution is the development of AMS benchmarks and the initial appli-

cation of the LHPN modeling and model checking methods to these benchmarks. The

application of these methods demonstrates the usefulness and necessity of these methods.

1.6 Overview

This dissertation is divided into six chapters with each chapter building upon the

preceding chapters. A chapter is devoted to each central contribution with a final

concluding chapter. Figure 1.2 presents a flowchart of the steps in the AMS verification

process described in this dissertation.

Chapter 2 describes the approach for modeling AMS systems. Background references

related to modeling methods are provided. The remainder of Chapter 2 is devoted to the

modeling portion of the verification flow in Figure 1.2. In this portion of the flow, the

designer can specify the circuit in a number of ways including VHDL-AMS. By allowing

designers to specify the model in a language that is familiar to them, it is hoped that they

are encouraged to accept formal verification methodologies. The VHDL-AMS description

is automatically compiled into a LHPN which includes Boolean signals to represent digital

circuitry and continuous variables to model voltages and currents in the analog circuitry.
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Liveness Properties

VHDL-AMS to
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Converter

Symbolic Model Tµ Property

Verification Result
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VHDL-AMS Model

SMT Based
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Checker

Verification Result

Designer

Safety and Bounded

Figure 1.2. AMS circuit verification tool flow.

The LHPN model provides a formalism for reasoning about the system being analyzed.

Chapter 3 focuses on the symbolic verification algorithm. After providing background

material related to the verification of hybrid systems, a detailed description of a new sym-

bolic verification algorithm is provided. This chapter focuses on the property specification

and LHPN to symbolic model conversion portions of the verification flow illustrated in

Figure 1.2. System properties are specified as temporal logic formulas using timed CTL

(TCTL). TCTL can be automatically generated from assert statements in VHDL-AMS

or more complicated properties can be specified by the designer. In preparation for the

application of the Boolean model checking method, an LHPN is converted to a Boolean

symbolic model and a TCTL property is converted into a timed µ (Tµ) property.

Chapter 4 explains the method for representing the state space in a Boolean manner.
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In [65], Seshia and Bryant describe a symbolic model checking procedure for real-time

systems based on the one described in [50]. Their method maps separation predicates to

Boolean variables so that analysis can be performed using BDD operations. Since this

work is only for real-time systems, all continuous variables can change only with a rate

of one. Therefore, this dissertation extends this work to support continuous variables

that can change at any rate within a range in order to allow for the symbolic modeling

checking of AMS circuits with BDDs. The Boolean representation relies on a canonical

representation of a restricted form of inequalities which is also described. Based on the

Boolean representation, each component of the algorithm is described in detail.

Chapter 5 provides details and algorithms for implementing an LHPN model checker

using Satisfiability Modulo Theories (SMT) tools. The SMT problem is a generalization

of Boolean Satisfiability (SAT) where Boolean variables are replaced by predicates from

various backbground theories including linear real and integer arithmetic. This support of

additional theories lends itself well to the application of model checking hybrid systems.

However, a necessity of creating state variables for each iteration of the state space

exploration means that an SMT model checker is bounded.

Chapter 6 discusses the results of running several examples through the software

developed from the implementation of these algorithms. Comparisons to other hybrid

verification tools are also provided. Results demonstrating the necessity for abstraction

methods are shown.

Chapter 7 summarizes the results of this work. The successes and limitations of this

approach to verifying AMS circuits are discussed. Finally, several ideas for extending this

research are presented as future work including a method of using the BDD based model

checker in combination with the SMT based model checker to exploit each method’s

strengths for greater utility.



CHAPTER 2

LABELED HYBRID PETRI NETS

2.1 Related Work

Several methods have been developed for modeling hybrid systems. Some of these

models resemble programming languages. One notable example is Charon [6]. Charon

is a modular hierarchical language where agents are the outermost building blocks con-

taining modes that describe the flow of control. Modes can contain additional modes

demonstrating the hierarchical nature of Charon. Additionally, agents and modes

support concurrency and reuse. The goal of languages like Charon is to be formal enough

to support analysis while allowing for a higher-level reasoning about hybrid systems.

A dominant class of hybrid system models is hybrid automata [4, 5]. They combine

automaton transitions for capturing discrete change, like digital circuit behavior with dif-

ferential equations for capturing continuous change, like analog circuit behavior. Hybrid

automata can model virtually any hybrid system, but this expressiveness makes analysis

extremely expensive and complicated. Therefore, the analysis approach described in this

dissertation is applicable only to a less expressive subset of hybrid automata known as

linear hybrid automata (LHA) where the real variables change at rates within a bounded

range and system properties are expressed in terms of linear constraints.

Another class of models is based on Petri nets. Petri nets consist of places, which

can contain tokens. Tokens move through the net via transition firings, which consume

tokens from the transition’s incoming places and produce tokens in transition’s outgoing

places. Historically, Petri nets have been used to model discrete systems but various

extensions have been proposed to develop hybrid Petri net models [33, 34]. One example

is the Fluid Stochastic Petri Nets (FSPN) proposed by Tuffen et al. [69]. FSPNs represent

continuous state with fluid places and are used with stochastic analysis methods. Another

Petri net model is the Hybrid Net Condition/Event System (HNCES) model proposed

by Chen et al. [24]. This model consists of discrete Petri nets and continuous Petri nets

interacting with each other through condition and event signals.
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LHA and other hybrid Petri net formalisms were considered; however, they each had

certain limitations. Transition firings of LHA are forced via invariants—a construct not

naturally present in AMS circuit specifications. In fact, the timing constraints of timed

Petri nets were found to be more well suited for forcing transition firings. However, hybrid

Petri net forms that contain places and transitions that are explicitly used for the flow of

continuous quantities did not lend themselves to the modeling of AMS circuits either. The

concept of having a resource that continuously flows from one place to another was not

necessary. Rather the idea of a value that can change at varying rates was more important.

Additionally, the connectivity between continuous places and transitions, and discrete

places and transitions was found to be cumbersome. The remainder of this chapter

focuses on the labeled hybrid Petri net (LHPN) model—a Petri net that is annotated with

assignments, enabling conditions, and invariants over continuous variables and Boolean

signals. The LHPN model is specially designed with analog and mixed-signal circuits in

mind. The LHPN model augments discrete Petri nets with labels that can operate over

continuous variables. This chapter describes the LHPN model and its semantics in detail.

This chapter also describes methods for generating LHPNs from various other forms.

2.2 LHPN Definition

An LHPN is defined as a directed graph with labels on places and transitions. An

LHPN is a tuple N = 〈P, T,B, V, F, L,M0, S0, Q0, R0〉:

• P : is a finite set of places;

• T : is a finite set of transitions;

• B : is a finite set of Boolean signals;

• V : is a finite set of continuous variables;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• L : is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 : is the set of initial Boolean signal values;

• Q0 : is the set of initial ranges of values for each continuous variable and;
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• R0 : is the set of initial ranges of rates for each continuous variable.

The preset of a transition t, denoted as •t, represents the set of places feeding t (i.e.,

{p | (p, t) ∈ F}). The postset of a transition t, denoted as t•, represents the set of places

that t feeds (i.e., {p | (t, p) ∈ F}). Similarly, the preset of a place p (•p) is the set of

transitions feeding the place, and the postset of a place p (p•) is the set of transitions

feeding that place.

A key component of LHPNs is labels. Some labels contain hybrid separation logic

(HSL) formulas which are a Boolean combination of Boolean variables and separation

predicates. HSL is an extension of separation logic [50, 64] (sometimes referred to as

difference logic) that allows for non-unit slopes on the separation predicates. These

formulas satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | c1x1 ≥ c2x2 + c3

where bi are Boolean variables, x1 and x2 are continuous variables, and c1, c2, and c3

are rational constants in Q. Note that any inequality between two real variables can be

formed with ≥ inequalities and inverses of ≥ inequalities. The notation boolPortion(φ) is

used to represent the Boolean portion of φ, i.e., φ with each of the inequalities existentially

abstracted. Similarly, the notation realPortion(φ) represents the real portion of φ where

each Boolean variable appearing in φ has been existentially abstracted. Given this

separation logic, each transition t ∈ T and place p ∈ P is labeled using the functions

defined in L = 〈Inv ,En,D ,BA,VA,RA〉:

• Inv : P → φ labels each place p ∈ P with an invariant;

• En : T → φ labels each transition t ∈ T with an enabling condition;

• D : T → |Q| × (|Q| ∪ {∞}) labels each transition t ∈ T with a lower and upper

bound [dl, du] on the delay for t to fire;

• BA : T → 2(B×{0,1}) labels each transition t ∈ T with Boolean assignments made

when t fires;

• VA : T → 2(V×Q×Q) labels each transition t ∈ T with a range of continuous variable

assignments, consisting of a lower and upper bound [al, au], that are made when t

fires;
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• RA : T → 2(V×Q×Q) labels each transition t ∈ T with a range of rate assignments,

consisting of a lower and upper bound [rl, ru], that are made when t fires.

2.3 LHPN Example

To illustrate the LHPN model, the switched capacitor integrator shown in Figure 2.1

is used as a running example throughout this chapter. This circuit takes as input a 5

kHz square wave that varies from −1 V to 1 V and generates a triangle wave as output

representing the integral of the input voltage. A simulation of this circuit under ideal

conditions is shown in Figure 2.2. Discrete-time integrators typically utilize switched

capacitor circuits to accumulate charge, which can cause gain errors in the integrator due

to capacitor mismatch. Therefore, the output voltage in our model is allowed to have

a slew rate anywhere between 18 to 22 mV/µs to represent a ±10 percent variance in

circuit parameters. A random simulation allowing for the variance in the output slew rate

is shown in Figure 2.3. The verification goal is to ensure that Vout never saturates (i.e.,

it is always between −2000 mV and 2000 mV ). An experienced analog circuit designer

may realize the potential of this circuit to fail. However, a very specific SPICE simulation

is required to demonstrate this failure as shown in Figure 2.4 where the output voltage

always increases at a faster rate than it decreases. Furthermore, it is highly unlikely that

a simulation allowing for random uncertainty in the system variables would reveal the

error [58]. Therefore, a formal verification approach is beneficial.

Figure 2.5 shows an LHPN model of the switched capacitor circuit in Figure 2.1.

This example is used to intuitively describe LHPN semantics before they are formally

freq(Vin) = 5 kHz
Vin = ±1000 mV

Φ2Φ1

C1

Q1

Vin
Vout

C2

C2 = 25 pF

C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

Q2

dVout/dt = ±(18 to 22) mV/µs

+

−

Figure 2.1. Circuit diagram of a switched capacitor integrator.
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Figure 2.2. Basic simulation of integrator under ideal conditions.
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Figure 2.3. Random simulation of integrator with variance in circuit parameters.
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Figure 2.4. Worst case simulation of integrator with variance in circuit parameters.

Q0 = {Vout = −1000} R0 = {V̇ out = [18, 22]} S0 = {¬Vin,¬fail}

p3

p2

(b)

[100, 100]

〈Vin := F 〉

t3

t2

〈Vin := T 〉
[100, 100]

{Vout ≤ −2000 ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

(c)

p4

p1

p0

(a)

〈V̇ out := [18, 22]〉

t1

t0

{¬Vin} [0, 0]

{Vin} [0, 0]

〈V̇ out := [−22,−18]〉

Figure 2.5. LHPN model of the switched capacitor integrator.



17

described. Transitions in LHPNs are controlled by enabling conditions and timing con-

straints. When the enabling condition becomes satisfied, the clock on the transition

begins and the transition fires sometime during which the clock is above its lower bound

and below its upper bound. Upon firing, the discrete marking is updated by removing

tokens from the preset places of the transition and placing tokens in the postset places

of the transition. Additionally, assignments are made to continuous variables, rates of

continuous variables, and Boolean variables. For the LHPN in Figure 2.5, the marking is

initially {p0, p2, p4}, the Boolean variables Vin and fail are false, the continuous variable

Vout is −1000, and Vout is increasing at a rate of 18 to 22 mV/µs. After 100 µs, t2

is required to fire resulting in p2 becoming unmarked, p3 becoming marked, and the

assignment of true to Vin. This assignment causes the enabling and immediate firing of

t0 and thus the assignment of −22 to −18 mV/µs to the rate for Vout . After an additional

100 time units, transition t3 fires, causing Vin to be assigned false which results in t1

becoming enabled. Immediately, t1 fires, and the process continues. If at any time, the

output voltage Vout falls below −2000 mV or increases about 2000 mV, transition t4 will

fire causing fail to be set to true. The assignment of true to fail indicates a failure.

2.4 LHPN Semantics

The formal semantics of LHPNs is considerably complex, specifically with regard to

range assignments to values and rates of continuous variables. Consider an LHPN example

with a single continuous variable, y, that is assigned the value range of 2 to 3 and a rate

range of 1 to 2 at time 0. Figure 2.6a shows all the possible values that y could have over

time. Figure 2.6b shows possible traces through this range assuming that at the time of

assignment, a random value and rate within the specified ranges are selected for y. This

interpretation of the semantics, however, does not allow for traces where the rate of y can

change at any time as in Figure 2.6c. Similarly, the trace shown in Figure 2.6d, where

the piece-wise representation has such a fine granularity that it looks like a continuous

curve, would not be allowed.

Furthermore, consider the case where y is assigned an initial value range of 2 to 3 and

a constant rate of one at time 0. Figure 2.7a shows all possible values of y in this instance

and Figure 2.7b shows a possible trace. However, the traces in Figure 2.7c and Figure 2.7d

could also be considered reasonable traces if the initial value of y could change within its

specified assignment range at any time. In Figure 2.7d, y changes by limited amounts



18

(b)

10time

10

y

2

3

10time

10

y

2

3

10time

10

y

2

3

(a)

10time

10

y

2

3

(c) (d)

Figure 2.6. Range assignment semantics of LHPNs. The shaded region encompasses all
the possible values of y and the lines represent possible traces through the region under
different semantic conditions.
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Figure 2.7. Range assignment semantics of LHPNs where the rate is a single value. The
shaded region encompasses all possible values of y and the lines represent possible traces
through the region under different semantic conditions.
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very frequently resulting in a curve that looks, but is not, continuous. This models the

idea that as y evolves, there is uncertainty about its value. With these considerations in

mind, a semantics for LHPNs allowing all of these described behaviors, follows.

The state of an LHPN is defined using a 6-tuple of the form ψ = 〈 M , S, Q, R, C,

QL, QR, RR〉 where:

• M ⊆ P is the set of marked places;

• S : B → {0, 1} is the value of the Boolean signals;

• Q : V → Q is the value of the continuous variables;

• R : V → Q is the rate of each continuous variable;

• C : T → Q is the value of the transition clocks;

• QL : V → Q is the last value that each variable is set to via a transition or

adjustment;

• QR : V → Q × Q is the range that is used in the most recent assignment to a

particular value;

• RR : V → Q × Q is the current range of acceptable rates for each continuous

variable;

The first five elements of the state (M , S, Q, R, and C) define the essential state

information and the last three elements of the state (QL, QR, and RR) provide additional

information that is necessary for calculating next states. The current state of an LHPN

can change via a transition firing, time advancement, or by adjustments to a variable’s

value and/or rate.

From a state ψ, a new state ψ′ = 〈M ′, S′, Q′, R′, C ′, QL′, QR′, RR′〉 can be reached

by firing an enabled transition ti (denoted as ψ ti→ ψ′). A transition ti is enabled when

all of the places in its preset are marked (i.e., •ti ⊆ M) and the enabling condition

on ti evaluates to true (i.e., Eval(En(ti), S,Q) where the function Eval : φ × S × Q →

{0, 1} evaluates an HSL formula for given values of the Boolean signals and continuous

variables). The set of enabled transitions is calculated by the function E(M,S,Q) given

a state marking, set of signal values, and set of variable values as follows:

E(M,S,Q) = {ti ∈ T | • ti ⊆M ∧ Eval(En(ti), S,Q)}

When firing a transition t, the next state is calculated as follows:
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• M ′ = (M − •t) ∪ t•

• ∀bi ∈ B.S′(bi) =
{
s if ∃(bi, s) ∈ BA(t)
S(bi) otherwise

• ∀vi ∈ V.Q′(vi) =
{
al if ∃(vi, al, au) ∈ VA(t)
Q(vi) otherwise

• ∀vi ∈ V.R′(vi) =
{
rl if ∃(vi, rl, ru) ∈ RA(t)
R(vi) otherwise

• ∀ti ∈ T.C ′(ti) =
{

0 if ti ∈ E(M ′, S′, Q′) ∧ ti 6∈ E(M,S,Q)
C(ti) otherwise

• ∀vi ∈ V.QL′(vi) =
{
al if ∃(vi, al, au) ∈ VA(t)
QL(vi) otherwise

• ∀vi ∈ V.QR′(vi) =
{

(al, au) if ∃(vi, al, au) ∈ VA(t)
QR(vi) otherwise

• ∀vi ∈ V.RR′(vi) =
{

(rl, ru) if ∃(vi, rl, ru) ∈ RA(t)
RR(vi) otherwise

In other words, the marking is updated by removing the places in the preset of ti

and adding the places in the postset of ti. Additionally, the Boolean assignments,

the continuous assignments, and the rate assignments associated with transition ti are

executed. In the cases of continuous assignments and rate assignments, the lowest value in

the range of assignments is selected initially. Next, the clocks associated with any newly

enabled transitions are set to zero. When a continuous variable assignment is performed,

its corresponding last assignment value is set to the same value to keep track of the most

recent assignment to that variable. This value is then used during state adjustments to

calculate the amount by which the variable has changed since its previous assignment.

Finally, the ranges of the continuous variable and rate assignments are stored in the state

so that continuous values and rates can periodically be adjusted for each variable.

Not all enabled transitions can fire. In order to fire, the transition must be admissible.

When a transition becomes enabled, its clock begins incrementing from zero. It is

admissible to fire a transition ti at any time after the transition’s clock satisfies its lower

delay bound and before it exceeds its upper delay bound (i.e., dl(ti) ≤ C(ti) ≤ du(ti))

as long as it remains continuously enabled. Furthermore, the state that would result

from firing ti must not violate any place’s invariant (i.e., ∀pi ∈M ′.Eval(Inv(pi), S′, Q′)).
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The function A(ψ, ti) determines if transition ti is admissible given a current state. It is

defined as follows:

A(ψ, ti) = {ti ∈ E(M,S,Q) ∧ dl(ti) ≤ C(ti) ≤ du(ti) ∧

∀pi ∈M ′.Eval(Inv(pi), S′, Q′) where ψ ti→ ψ′}

From a state ψ, a new state ψ′ can be reached by elapsing τ time units (denoted as

ψ
τ→ ψ′). The resulting state is calculated as follows:

• ∀vi ∈ V.Q′(vi) = Q(vi) +R(vi) · τ

• ∀ti ∈ T.C ′(ti) =
{

0 if ti ∈ E(M,S,Q′) ∧ ti 6∈ E(M,S,Q)
C(ti) + τ otherwise

In other words, when calculating the new state, values of each continuous variable are

updated based on the current rate and the amount of time that has elapsed. Additionally,

active clocks are incremented by τ time units and clocks on newly enabled transitions are

set to zero. Transitions can become enabled via time elapse because enabling conditions

can become satisfied as variables change value. All other components of the state remain

the same.

Time can potentially advance by any value τ which is less than τmax(ψ). The value

of τmax(ψ) is the largest amount of time that may pass before a transition is forced to

fire (i.e., the clock associated with it exceeds its upper bound) or an inequality changes

its Boolean value based on the current values and rates of the variables. The maximum

possible time advancement, τmax(ψ), is calculated as:

τmax(ψ) = min


C(ti)− du(ti) ∀ti ∈ E(M,S,Q)

τ ′′
E(M ′′, S′′, Q′′) 6= E(M,S,Q)∧
∀τ ′ < τ ′′.E(M ′, S′, Q′) = E(M,S,Q)

where ψ τ ′→ ψ′ and ψ τ ′′→ ψ′′

It is admissible to elapse time by τ ≤ τmax(ψ) time units as long as the invariants on the

marked places remain satisfied at all times less than τ . Formally, τ is admissible if the

following holds in state ψ:

A(ψ, τ) = τ ≤ τmax(ψ) ∧ ∀τ ′ ≤ τ.
∧

pi∈M

Eval(Inv(pi), S′, Q′)) where ψ τ ′→ ψ′.

At random times, a new state ψ′ can be reached from a state ψ, by adjusting a

continuous variable’s value (denoted as ψ
Q(vi)←q→ ψ′) or by adjusting a continuous

variable’s rate (denoted as ψ
R(vi)←r→ ψ′). When an adjustment to a variable’s value

occurs, the new state is calculated as follows where vi ∈ V and q ∈ QR(vi):
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• Q′(vi) = (Q(vi)−QL(vi)) + q

• QL′(vi) = q

The adjustment is applied by assigning a new value, q, from the most recent range of

assignments to the variable vi and adding it to the amount by which vi had already

changed since the last assignment (i.e., Q(vi)−QL(vi)). Additionally, the variable’s last

assignment value is updated to the new value. All other components of the state remain

the same. It is admissible to adjust a variable vi’s value using q if the following holds:

A(ψ, vi, q) = ∀q′ ∈ ([QL(vi), q] ∪ [q,QL(vi)]).(E(M,S,Q) = E(M ′, S′, Q′) ∧

∀pi ∈M ′.Eval(Inv(pi), S′, Q′) where ψ
Q(vi)←q′→ ψ′

In other words, in order to perform a value adjustment, the set of enabled transitions must

remain the same for all values between the variable’s previous value and the variable’s

new value, and the invariants for all enabled transitions must remain satisfied for all

values between the variable’s previous value and the variable’s new value.

An adjustment to a variable’s rate, which is always admissible, results in a new state

calculated as follows where vi ∈ V and r ∈ RR(vi):

• R′(vi) = r

In this case, the new rate assignment is simply updated in the state. Adjustments to a

variable’s value or rate can occur at any time on any variable.

2.5 LHPN Execution

The execution of an LHPN is a finite or infinite sequence ψ0 → ψ1 → ψ2 → ... of

states such that:

1. The initial state, ψ0 is 〈M0, S0, lowers(Q0), lowers(R0),C := 0, lowers(Q0), Q0, R0〉

where lowers forms a set containing the lower bound values for each variable in the

range sets;

2. The next state is reached by a transition firing ( ti→), a time progression ( τ→), a

continuous value adjustment (
Q(vi)←q→ ), or a continuous rate adjustment (

R(vi)←r→ );

3. If the next state is reached via a transition firing (ψi
ti→ ψi+1), then the transition

ti must be admissible, i.e., A(ψi, ti) must be satisfied;
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4. If the next state is reached via time progression (ψi
τ→ ψi+1), then the amount of

time elapsed, τ , is admissible, i.e., A(ψi, τ);

5. If the next state is reached via a continuous value adjustment (ψi
Q(vi)←q→ ψi+1), then

it must be admissible as determined by A(ψ, vi, q) where vi ∈ V and q ∈ QR(vi);

6. If the next state is reached via a continuous rate adjustment (ψi
R(vi)←r→ ψi+1), then

vi ∈ V and r ∈ RR(vi).

The language accepted by an LHPN, N , is the collection of all possible executions of the

LHPN and it is denoted as L(N).

2.6 LHPN Simulation

An algorithm for simulating LHPNs is shown in Figure 2.8. The algorithm operates

by constructing the initial state from the model using the function lowers which returns a

set containing the lower bound values for each variable in the range sets. This algorithm

requires that a minimum time step δ be specified by which time is elapsed at each

iteration, if possible. This simulation approach is necessary because the calculation of

τmax(ψ) requires the determination that at all times below τmax(ψ) that the set of enabled

transitions remain unchanged. This is difficult to ensure given the infinite number of

possible times below τmax(ψ). The algorithm operates by firing any events that are

queued to occur at the current time. Alternatively, if no events are ready to occur, a

time step of δ is elapsed, if possible. To determine if it is possible to elapse time by δ

time units, a time progression is applied where τ equals δ, resulting in a new state ψ′.

Next, the invariants are checked based on ψ′ to ensure that application of the time step

did not violate them. If none of the invariants are violated, the time step is allowed,

otherwise it is rolled back. After either applying a transition or moving time forward by

δ time units, a continuous value adjustment is performed by randomly selecting a new

value and testing if the set of enabled transitions is impacted. If not, the continuous

value adjustment is applied. Additionally, continuous rate adjustments are performed by

randomly selecting new values from the rate ranges. Next, the set of currently enabled

transitions is calculated based on the current state. Any events that are no longer enabled

are removed from the event queue and newly enabled transitions are scheduled for firing

by randomly selecting a time within the transition’s timing bounds. Finally, this process

repeats itself forever.
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LHPNSim (〈P, T,B, V, F, L,M0, S0, Q0, R0〉, δ)
ψ = 〈M0, S0, lowers(Q0), lowers(R0),C := 0, lowers(Q0), Q0, R0〉
eventQueue = ∅ // Pairs of times and transitions ordered by times.

time = 0

while true

// Perform the next scheduled discrete transition if possible

if eventQueue.front().time() == time

ti = eventQueue.pop().transition()

if A(ψ, ti) then

ψ
ti→ ψ′

ψ = ψ′

end if
// If no transitions were fired, elapse time by δ if possible.

else
ψ

δ→ ψ′

if
V

pi∈M Eval(Inv(pi), S
′, Q′) then

ψ = ψ′

time = time + δ
end if

end if
// Adjust value and rates

for each vi ∈ Q
select q ∈ QR(vi)

ψ
Q(vi)←q→ ψ′

if E(M,S,Q) == E(M ′, S′, Q′) ∧
V

pi∈M Eval(Inv(pi), S
′, Q′) then

ψ = ψ′

end if
select r ∈ RR(vi)

ψ
R(vi)←r→ ψ′

ψ = ψ′

end for
// Update event queue.

currentE = E(M,S,Q)
// Remove events that are no longer enabled.

for each e ∈ eventQueue
if e.transition() 6∈ currentE then

eventQueue.remove(e)

end if
end for
// Insert newly enabled events and pick a random firing time.

for each ti ∈ currentE

if 〈∗, ti〉 6∈ eventQueue then
// Calculate next time and round to nearest δ
rtime = time + (random(lower(ti), upper(ti))/δ) * δ
eventQueue.insert(〈rtime, ti〉)

end if
end for

end while
end

Figure 2.8. Algorithm for simulating LHPNs that is approximate.
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Note that this simulation algorithm is approximate in that the set of executions that

this simulation approach allows is not equivalent to L(N). This is due to the fact that

events are scheduled to occur on delta time step boundaries which may in fact be slightly

before or slightly after when the event is supposed to occur. As a result, the simulator

can potentially allow traces that are not in L(N) and potentially disallow traces that are

in L(N).

2.7 Generating LHPNs from LHAs

Linear hybrid automata provide many of the same capabilities as LHPNs with the

exception that concurrency is arguable easier to represent in LHPNs. An LHA model

of the switched capacitor integrator from Figure 2.1 is shown in Figure 2.9 , minus the

fail transition, and referred to throughout the formal definition of LHA. This definition

is based on that in [7]. An LHA is defined as a tuple, H = 〈X,O,E, inv , dif , act , syn〉,

such that:

X : is a finite ordered set of real-valued data variables X = {x1, x2, . . . , xn}. Note that

Ẋ = {ẋ1, ẋ2, . . . , ẋn} is a finite ordered set of real-valued variables where ẋi refers

to the first derivative of xi with respect to time. X0 contains the initial values of

the variables in X. In Figure 2.9, X = {Vout , clk}; Ẋ = {V̇out , ˙clk}; and the initial

values for Vout and clk are −1000 and 0, respectively.

O : is a finite set of vertices called control locations. Figure 2.9 has two control locations

labeled low and high. The location low is initially active.

E : is a finite multiset of edges called transitions where each transition, t, is a directed

edge from a source location vi to a target location vj . The set E in Figure 2.9

high

0 ≤ clk ≤ 100

Vout = −1000 ∧ clk = 0

0 ≤ clk ≤ 100

low
clk = 100 → clk := 0

clk = 100 → clk := 0
∧ ˙clk = 1 ∧ ˙clk = 1

18 ≤ V̇out ≤ 22 −22 ≤ V̇out ≤ −18

Figure 2.9. LHA model of the switched capacitor integrator circuit.



27

contains two members: t1 = (low,high) and t2 = (high, low). To simplify the

presentation, it is assumed that there is at most a single edge between two locations

(i.e., E is a set rather than a multiset). However, the methods described in this

chapter can be readily extended to support multiple edges between two locations.

inv : is a labeling function that assigns an invariant condition to each control location.

The invariant is an HSL formula over the data variables in the system. If the

automaton is in location v, inv(v) may force a transition to occur by preventing

time from progressing beyond a point in which inv(v) is true. An example of an

invariant in Figure 2.9 is 0 ≤ clk ≤ 100 in location low.

dif : is a labeling function that assigns a range of rates, dif (v), to each variable in each

control location v. For example, location low in Figure 2.9 has ranges of rates of

18 ≤ V̇out ≤ 22 and ˙clk = 1.

act : is a labeling function that assigns an action, act(t), to each transition t ∈ E. The

action is a guarded command act(t) = (guard(t) → assign(t)) where guard(t) is an

HSL formula without Booleans and assign(t) is a set of data variable assignments

of the form xk := [lk, uk] which assigns an inclusive range of rational values between

lk and uk to xk. When assigning a single value, the abbreviated form xk := ak

is used. In Figure 2.9, the action for the transition between low and high is

clk = 100 → clk := 0 where clk = 100 is the guard and clk := 0 is the assignment.

Note that clk = 100 is represented in HSL as clk ≥ x0 + 100 ∧ x0 ≥ clk − 100.

syn: is a labeling function that assigns a set of synchronization labels to each tran-

sition (vi, vj) ∈ E. Synchronization labels are used for communication between

automata in a parallel composition of automata. Figure 2.9 is a single automaton

so synchronization labels are not used.

Formal semantics for LHA are given in [7]. Intuitively, transitions in LHA are

controlled by a combination of guards and invariants. While in a location, the data

variables change at their specified rate as long as the invariant is satisfied. If progress

would violate the invariant, time progression is halted. In Figure 2.9, beginning in location

low with Vout equal to −1000 mV and clk equal to 0, Vout increasing at a rate between

18 and 22 mV/µs for 100 µs. When clk reaches 100, Vout is between 800 and 1200 mV .

Once clk equals 100, the enabling condition on the transition between low and high
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becomes enabled and the transition occurs before clk increases beyond 100 which would

violate the invariant. While in location high, Vout decreases at a rate been 18 and 22

mV/µs until clk equals 100. At this point Vout would be between −1600 and −600 mV ,

and a transition into the low state occurs and the process repeats.

All languages that can be specified by LHAs can also be specified by LHPNs. This

is shown by describing a straightforward translation from LHAs to LHPNs. The reverse

is also believed to be true, but a proof is not shown here as it is not important for

this research. Given this translation from LHA to LHPNs, it is useful to consider the

properties that the resulting LHPNs have in comparison to the original LHA. Given the

direct translation from LHA to LHPNs, it is asserted that the set of languages specified by

an LHPN generated from an LHA is equivalent to the languages specified by the original

LHA. In other words, consider an LHA H and the language that it specifies L(H), and

an LHPN N that is converted from H and the language that it specifies L(N). The

two languages are equivalent, i.e., L(H) ≡ L(N). Therefore, the results of analyzing the

LHPN N (i.e., whether or not it violates a given property) also apply to the original LHA

H.

The algorithm for generating an LHPN from an LHA that does not contain synchro-

nization labels is shown in Figure 2.10. The translation begins by creating places for each

location in the LHA and assigning invariants to those places based on the invariants on

the locations in the LHA. Continuous variables are created for each data variable in the

LHA and since there are no Boolean signals in LHAs, the corresponding LHPN contains

no Boolean signals. Next, for each edge in the LHA, a transition and arcs connecting the

places to and from the transition are created. As the transitions are created, enabling

conditions and variable assignments are extracted from the LHA’s actions, delays are set

to zero, Boolean assignments are set to empty sets, and rate assignments are extracted

from the location that corresponds to the transition’s outgoing place. The LHPN in

Figure 2.11 shows the result of automatically translating the LHA in Figure 2.9 to an

LHPN.

When an LHA contains synchronization labels, the translation becomes slightly more

complicated. Two possible approaches exist for converting parallel compositions of au-

tomata ({H0...Hn}) that use synchronization labels to LHPNs. The first approach is to

merge the LHAs into a single automaton that does not contain synchronization labels and

convert the resulting LHA into an LHPN. An algorithm for composing multiple automata
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〈P, T,B, V, F, L,M0, S0, Q0, R0〉 LHAtoLHPN (〈X,O,E, inv , dif , act , syn〉)
assert syn == {∅}
for each vi ∈ O

P = P ∪ pvi

Inv(pvi) = inv(vi)
end for
V = X
B = {∅}
for each (vi, vj) ∈ E

T = T ∪ tvi,vj

F = F ∪ (pvi , tvi,vj ) ∪ (tvi,vj , pvj )
En(tvi,vj ) = guard(vi, vj)
D(tvi,vj ) = (0,∞)
BA(tvi,vj ) = {∅}
VA(tvi,vj ) = assign(vi, vj)
RA(tvi,vj ) = dif (vj)

end for
M0 = pv0

S0 = {∅}
Q0 = X0

R0 = dif (v0)
return 〈P, T,B, V, F, L,M0, S0, Q0, R0〉

end

Figure 2.10. Algorithm for converting LHAs to LHPNs. This algorithm takes a tuple
representing an LHA and returns a tuple representing an LHPN.

Q0 = {Vout = −1000} R0 = { ˙clk = 1, V̇ out = [18, 22]} S0 = {}

t1

t0

〈clk := 0, ˙clk := 1, V̇ out := [−22,−18]〉

{clk = 100} [0,∞]

{clk = 100} [0,∞]

〈clk := 0, ˙clk := 1, V̇ out := [18, 22]〉

low
0 ≤ clk ≤ 100

high
0 ≤ clk ≤ 100

Figure 2.11. LHPN of the integrator generated from the LHA integrator model.
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into a single automaton is shown in [49].

An alternative approach, which works with the majority of LHA but perhaps not all,

requires special LHPN segments to be inserted where synchronization labels exist. The

LHPN segment shown in Figure 2.12 is inserted for each edge (vi, vj) in Hi that has a

synchronization label l. If Hi contains no edges with synchronization label l, the Boolean

variable li is set to true in the initial state. The LHPN segment operates by modeling

a four-phase handshake. When the guard on each edge is satisfied, the Boolean signal li

is set to true. If at any time the guard becomes unsatisfied, li is reset to false and the

handshake is aborted. When all Boolean signals li become true, a transition occurs which

results in the assignments on the edge being performed. Finally, the Boolean signals are

reset to false for use in future transitions.

2.8 Generating LHPNs from VHDL-AMS

VHDL-AMS is a hardware description language that includes extensions specifically

for describing analog and mixed-signal circuits. By providing a translation mechanism

from VHDL-AMS to LHPNs, many of the hurdles associated with verification can poten-

tially be avoided because designers who are already familiar with VHDL-AMS are not

required to learn abstract modeling methods. VHDL-AMS was designed to allow a textual

description of AMS circuits which can be simulated. Since an LHPN simulation cycle

behaves in the same way that the VHDL-AMS simulation cycle behaves, the simulations

that would result from an LHPN that has been converted from VHDL-AMS are the same

as the simulations that would result from the original VHDL-AMS.

pvj

pvi

[0, 0][0, 0][0, 0][0, 0]

{¬l0 ∧ ... ∧ ¬ln}{l0 ∧ ... ∧ ln}

{¬guard(vi, vj)}
[0, 0]

〈li := T 〉 〈assign(vi, vj)〉 〈li := F 〉

〈li := F 〉

{guard(vi, vj)}

Figure 2.12. Converting sync labels into an LHPN representation.
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The VHDL-AMS to LHPN compiler is built using methods described in [71] and

currently works with a subset of the VHDL-AMS language. Methods for generating

LHPNs from many VHDL statements for representing digital systems are described in

[71]. Specifically, variables of types std logic for representing Boolean signals are allowed

and sequential behavior can be specified using process statements without sensitivity

lists. Within a process, supported statements are wait, signal assignment, if-use, case,

and while-loop.

Simulators that support the VHDL-AMS extensions seem to vary in the semantics

that are implemented. Therefore, a subset of the AMS extensions has been selected

such that the semantics seem to be fairly consistent across simulators. The supported

subset of VHDL-AMS allows the creation of a continuous value using a quantity of

type real, the initialization of continuous variables using break statements, and the

assignments of rates to real quantities using the ’dot notation within simultaneous if-use

and case-use statements. Additionally, the use of ’above to test the value of real

quantities, and the specification of properties using assert statements is allowed. For

convenience, VHDL-AMS descriptions also use procedures defined in the handshake and

nondeterminism packages [57]. The assign procedure performs an assignment to a signal

at some random time within a bounded range specified by its parameters and waits until

the assignment has been performed before returning. The span procedure takes two real

values and returns a random value within that range. The span procedure is used to

assign a range of rates to a continuous variable.

An LHPN representation of the simultaneous if-use statement in Figure 2.13 is

shown in Figure 2.14. The condition in each if statement is mapped to a guard on a

transition and the inverses of the other conditions are asserted to ensure that only a

single transition is enabled to fire at any one time. A rate assignment to a continuous

variable is performed when a condition is satisfied by associating the rate assignment

with the particular transition. A very similar translation is used for the simultaneous

case-use statement. Additionally, Boolean variables corresponding to the possible rates

on the continuous variable are updated to reflect the new rate. These Boolean variables

are used to prevent repeated firings of the same transition.

A VHDL-AMS assert statement can be used to state basic safety properties about

the system. Figure 2.15 shows the LHPN for representing the statement assert(f) where

f is a Boolean statement over the variables in the system. The net in Figure 2.15 operates
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if b1 use
v’dot == span(l1, u1);

elsif b2 use
v’dot == span(l2, u2);

else
v’dot == span(l3, u3);

end use;

Figure 2.13. VHDL-AMS if-use statement.

p0

t1

t3

{¬fail ∧ ¬v̇[l2,u2] ∧ ¬b1 ∧ b2}
〈v̇ := [l2, u2], v̇[l1,u1] := F,

t2

[0, 0]{¬fail ∧ ¬v̇[l2,u2] ∧ ¬b1 ∧ ¬b2}

[0, 0]

v̇[l2,u2] := T, v̇[l3,u3] := F 〉

v̇[l2,u2] := F, v̇[l3,u3] := T 〉
〈v̇ := [l3, u3], v̇[l1,u1] := F,

[0, 0]

{¬fail ∧ ¬v̇[l2,u2] ∧ b1 ∧ ¬b2}

v̇[l2,u2] := F, v̇[l3,u3] := F 〉
〈v̇ := [l1, u1], v̇[l1,u1] := T,

Figure 2.14. Representing VHDL-AMS if-use statements as LHPNs.

p0

{¬f} [0, 0]

〈fail := T 〉

t1

Figure 2.15. Representing VHDL-AMS assert statements as LHPNs.
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by firing a transition when f is no longer satisfied. Upon firing the transition, the signal

fail is set to true. In order to support continuous quantities in simultaneous use and

assert statements, the ’above over real quantities is converted to an inequality within

the guards on the transitions.

Figure 2.16 shows a VHDL-AMS description for the circuit in Figure 2.1. This descrip-

tion tracks the real quantity Vout that represents the output voltage. The LHPN shown in

Figure 2.17 is automatically generated from the VHDL-AMS model in Figure 2.16. While

similar to the VHDL-AMS description in [55], the VHDL-AMS shown in Figure 2.16 is

more concise because the analysis allows rates to be specified as ranges. This model

tracks the real quantity Vout that represents the output voltage. The break statement

sets the initial value for Vout . The Boolean variable V in determines the rate of Vout

using the if-use statements. When V in is 0, Vout increases at a rate between 18 and 22

mV/µs. When V in is 1, Vout decreases at a rate between −22 and −18 mV/µs. The

if-use statement is compiled into the LHPN in Figure 2.17a. The process statement

is compiled into the LHPN in Figure 2.17b. Initially Vout is −1000 mV and increasing

between 18 and 22 mV/µs. After 100 µs, V in is assigned to one by the assign function

which causes Vout to begin decreasing at a rate of −22 to −18 mV/µs. The assert

statement is used to check if Vout falls below −2000 mV or goes above 2000 mV and is

compiled into the LHPN shown in Figure 2.17c which fires a transition to set the Boolean

signal fail to true when the assertion is violated.

2.9 Approximating Differential Equations

The capability to convert differential equations to approximate LHPN representations

is also beneficial since analog circuits are commonly modeled using systems of ordinary

differential equations. The approximation approach described in this section relies on

the capability to calculate the rates specified by the differential equations for a large

number of points within a region of interest. Any mathematical tool can be used to

perform this sampling. In this case, Matlab was used. Since only a sampling of the

continuous region is being performed, this approach is approximate in nature rather than

conservative. In other words, it may not encompass all the behavior of the original

differential equations. However, increasing the number of data points in the sampling

improves the approximation. This modeling technique allows a designer to model very

complex differential equations; however, since it is approximate in nature, the results
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library IEEE;

use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity integrator is
end integrator;

architecture switchCap of integrator is
quantity Vout:real;

signal Vin:std logic := ’0’;

begin
break Vout => -1000.0; --Initial value

if Vin=’0’ use
Vout’dot == span(18.0, 22.0);

elsif Vin = ’1’ use
Vout’dot == span(-22.0, -18.0);

end use;
process begin

assign(Vin,’1’,100,100);

assign(Vin,’0’,100,100);

end process;
assert (Vout’above(-2000.0) and

not Vout’above(2000.0))

report ‘‘error’’

severity failure;

end switchCap;

Figure 2.16. VHDL-AMS for a switched capacitor integrator.

〈V̇ out := [18, 22], V̇ out [18,22] := T,

V̇ out [−22,−18] := F 〉 t1
p0

t0

{¬fail ∧ ¬Vin ∧ ¬V̇ out [18,22]}

〈V̇ out := [−22,−18], V̇ out [18,22] := F,

{¬fail ∧ Vin ∧ ¬V̇ out [−22,−18]}

V̇ out [−22,−18] := T 〉
(a)

p2

p1

t3

t2

{¬fail} [100, 100] 〈Vin := T 〉

{¬fail} [100, 100] 〈Vin := F 〉

(b)

{Vout ≤ −2000 ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

p3

(c)

R0 = {V̇ out = [18, 22]}
S0 = {¬Vin,¬fail}

Q0 = {Vout = −1000}

Figure 2.17. LHPN of the switched capacitor integrator generated from VHDL-AMS.
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cannot be fully trusted.

After the sampling of the differential equations is performed, the data points are

decomposed into subregions in which the rate of change is within a range of constant

rates as determined by the minimum and maximum rate of the data points within the

subregion—a form that LHPNs can efficiently represent. Any discretization method with

the goal of minimizing the resulting number of subregions may be utilized with the

additional restrictions that subregions be rectangular in shape and have only a single

neighboring subregion on each side in each dimension. The number subregions that are

created directly influences the accuracy of the results. Fewer subregions results in greater

approximation while more subregions reduces the amount of approximation but increases

the analysis time since the resulting LHPN is larger.

After decomposing the data points into discrete subregions, an LHPN can be gener-

ated. Figure 2.18 shows an example of a two-dimensional surface divided into subregions

where each subregion is approximated by a range of rates. The surface could be any

surface expressed by a set of differential equations. The region where 0 ≤ x ≤ x0 and

0 ≤ y ≤ y0 is shown with greater detail. The continuous variables x and y increase or

decrease at a range of rates within each region. The discrete transitions t1 and t2 allow

transitions from p0 when x and y increase beyond x0 − δ and y0 − δ, respectively, and

different rates are necessary. The discrete transitions t3 and t4 allow transitions in the

reverse direction into p0 when x and y fall below x0 +δ and y0 +δ, respectively. Note that

the delta amount δ is used to prevent rapid transitions between neighboring regions when

near the boundary. Upon transitioning, new rate ranges are assigned to each continuous

variable that correlate with the ingoing region. Each subregion has a corresponding Petri

net representation, resulting in a LHPN that approximates the surface.

One possible method for decomposing the continuous state space into a discrete

number of states where rates are assumed to be constant within a range is described here.

This approach is similar to that proposed in [45, 46, 47, 48] where the continuous state

space is divided into regions and each region is represented in a Boolean manner. From

this decomposition, a transition relation is created by selecting test points in each region to

determine reachable next states. This Boolean abstraction allows them to perform model

checking using standard Boolean based approaches. While a very promising approach,

this technique necessarily loses significant accuracy in the abstraction to a Boolean model.

The method also is not guaranteed to be conservative since the test points chosen do
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p0

{x < x0 + δ} [0, 0]

〈ẋ := [dx0l, dx0u]〉

〈ẋ := [dx1l, dx1u]〉
{x ≥ x0 − δ} [0, 0]

{y ≥ y0 − δ} [0, 0]

〈ẏ := [dy1l, dy1u]〉
〈ẏ := [dy0l, dy0u]〉
{y < y0 + δ} [0, 0]

t1

t2t4

t3

x

y

x1 x2

y1

y0

· · ·

··
·

Figure 2.18. Representing differential equations using LHPNs.

not necessarily find all possible reachable states in the original continuous model. As

discretization of the continuous space continues, a primary goal is to minimize the number

of discrete subregions generated. The size of the final LHPN grows as the number of

discrete subregions increases, so it is important to intelligently select where divisions in

the continuous space are made.

The continuous space is initially restricted to a finite region by the user, and the

space is sampled at many points throughout that region. It is important to oversample

the system to ensure that important points are not ignored. In our implementation, a

dense matrix of data points for each continuous variable over the user specified range

is calculated. A matrix L is then calculated that contains the combined vectors of all

continuous variables in the system.
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Divisions are iteratively added to L until the user specified number of subregions has

been created. A division is defined as a straight cut through the region. A division

location is determined by attempting all possible divisions and then selecting the division

which has the least cost. Cost is defined as follows:

cost(R) =
∑

r∈R lm(r)Nr

N

where R is the set of subregions, Nr is the number of data points in subregion r, and N

is the number of data points in the entire region. lm(r) is a measure of the variation of

the data points in subregion r:

lm(r) = 1− miny∈r y

maxy∈r y

Essentially, cost is a weighted average of the variation among the data points in all

subregions. Once the regions have been selected, for each continuous variable in the

system, the floor and ceiling of all the data points in each subregion is calculated and

used as the lower bound rate and upper bound rate, respectively, for that subregion.

This modeling method is illustrated using the tunnel diode oscillator example from

[46]. This example is also used by Gupta et al. in [43] to illustrate the analog verification

technique they describe. The same numerical parameters as Gupta et al. are used.

The tunnel diode oscillator example is shown in Figure 2.19. This circuit is supposed to

oscillate, and the goal of verification would be to determine for what parameters and initial

conditions it oscillates. This circuit can be described with two differential equations:

dV c

dt
=

1
C

(−h(V c) + Il)

dIl

dt
=

1
L

(−V c−R · Il + V in)

VcVin

R L

C

Il

Figure 2.19. Tunnel diode oscillator circuit.



38

where h is a piecewise model of the tunnel diode behavior:

h(Vd) =


6.0105V 3

d − 0.9917V 2
d + 0.0545Vd 0 ≤ Vd ≤ 0.055

0.0692V 3
d − 0.0421V 2

d + 0.004Vd + 8.95794 · 10−4 0.055 ≤ Vd ≤ 0.35
0.2634V 3

d − 0.2765V 2
d + 0.0968Vd − 0.0112 0.35 ≤ Vd ≤ 0.50

Plots of these two functions are shown in Figure 2.20.

Using this discretization method, 16 discrete subregions are required to model the

oscillatory/nonoscillatory behavior of the circuit. Using a naive discretization method

where divisions are selected so that all subregions are of equal size requires 36 discrete

subregions to reproduce the oscillatory/nonoscillatory behavior. Plots showing how the

continuous space is divided using this approach and the naive approach are shown in

Figure 2.21 and Figure 2.22, respectively. Note, that in these examples, the rates of Vc

and Il within each region are specified as single values rather than ranges. Figure 2.23

shows how the continuous space would have been divided if 16 regions is used. In this

figure, the approximation contains no indication that at low voltage there is a spike in

the rate of Vc. This over approximation causes incorrect behavior in simulation.

2.10 Summary

The LHPN model, a key contribution of this dissertation, provides a mechanism for

modeling AMS circuits. The use of timing bounds on transitions and labelings containing

continuous variables make LHPNs well-suited for this purpose. The languages that are

accepted by LHPNs are specified to be the set of allowed executions as specified by the

formal semantics of this model. LHPNs can be simulated using an approach that relies

on selection of a delta time step; however, due to this reliance the executions that result

from the simulator do not correspond directly to the formal semantics of the LHPN, i.e.,

it may allow executions that are not possible and disallow executions that are possible.

A method for converting LHA, an alternate hybrid system modeling formalism, into

LHPNs is presented. The languages allowed by LHAs can be represented using LHPNs as

shown by the straightforward conversion process. Therefore, any assertions based on the

LHPN analysis are also assertions on the original LHA. VHDL-AMS provides a convenient

input format for LHPNs. An LHPN that is generated from VHDL-AMS corresponds

directly to the semantics of the VHDL-AMS that is believed to be implemented by a

variety of VHDL-AMS simulators. Therefore, statements derived from the analysis of the

resulting LHPN apply directly to the original VHDL-AMS.
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Figure 2.20. Differential equation plots for tunnel diode oscillator. (a) Rate of change
for Vc for various operating points. (b) Rate of change for Il for various operating points.
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Figure 2.21. Approximation of continuous rates using described method. (a) Rate of
change for Il for various operating points. (b) Rate of change for Vc for various operating
points.
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Figure 2.22. Approximation of continuous rates with 36 subregions using naive method.
(a) Rate of change for Il for various operating points. (b) Rate of change for Vc for various
operating points.
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Figure 2.23. Approximation of continuous rates with 16 subregions using naive method.
(a) Rate of change for Il for various operating points. (b) Rate of change for Vc for various
operating points.
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The method for approximating differential equations using LHPNs allows for systems

of differential equations to be modeled and analyzed using LHPNs. Since the conversion

is approximate in nature, assertions about the original differential equation system based

on LHPN analyses are not conclusive. The capability to model and analyze differen-

tial equation models using LHPNs, however, may be useful to designers by providing

one possible approach to performing state space explorations rather than just series of

simulations.



CHAPTER 3

SYMBOLIC MODEL OF LHPNS

In order for analysis to proceed, a symbolic model is generated from the LHPN that

contains the essential information for analysis. The symbolic model consists of three

components: an invariant, a set of possible rates, and a set of guarded commands. These

three components of the symbolic model are used by the symbolic model checkers to

perform the state space exploration of the original LHPN. Therefore, it is important that

the symbolic model accurately reflects the semantics of the original LHPN. Specifically,

if the model checker is performing an exact state space exploration given a symbolic

model, the resulting state space should be equivalent to the language specified by the

original LHPN. Similarly, if the model checker is performing an abstract state space

exploration given the symbolic model, the resulting state space should fully encompass

the language specified by the original LHPN, plus some additional state space, potentially.

The remainder of this chapter provides an algorithmic construction of the symbolic model

components.

3.1 Implicit Model Variables

Before constructing the symbolic model, a set of real variables and two additional

sets of Boolean variables are created in addition to the sets defining an LHPN. The set

of real variables is used to track the values of the clocks on each transition. These real

variables are referred to as transition clocks and denoted as ct for the clock on transition

t. The first set of Boolean variable is known as clock active variables, and is used to keep

track of whether or not the clocks on transitions are active. Clock active variables are

denoted by at for the clock active variable on transition t. The second set of Boolean

variables is known as Boolean rate variables used for determining at which rate each

continuous variable is currently changing. Boolean rate variables are denoted by v̇[rl,ru]

for the Boolean variable corresponding to the continuous variable v currently advancing

at a range of rates [rl, ru] These sets are formally defined as follows:
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• C : {ct | t ∈ T} where ct is the real value of the clock on transition t;

• A : {at | t ∈ T} where at is a Boolean value that indicates if the clock on a transition

(ct) is active; and

• BR : {v̇[rl,ru] | v ∈ V ∧ ((v, rl, ru) ∈ R0 ∨ ∃t.(v, rl, ru) ∈ RA(t))}.

The notation BR(v) is used to represent the subset of variables in BR that affects the

rate of the continuous variable v, i.e., those of the form v̇[rl,ru].

3.2 Invariant

The invariant (φI) is an HSL statement that must be satisfied in every state of the

system and is calculated as shown in Equation 3.1.

φI = Φ ∧
∧
t∈T

(at ⇒ •t ∧ En(t) ∧ 0 ≤ ct ≤ u(t)) ∧ (at ⇒ •t ∨ Ẽn(t)) (3.1)

The invariant first states that only the discrete states (represented by Φ) can be reached.

The formula Φ is found by performing a state space exploration of the LHPN while

neglecting the continuous variables. The discrete state space exploration is based on the

Petri net algorithm described in [61] with extensions to include values of Boolean signals

and Boolean rate variables in the state space. In other words, Φ is a formula over the

Boolean variables for the Petri net marking, Boolean signals, and Boolean rate variables.

Calculation of Φ is performed by first finding the initial Boolean state, iteratively applying

transition firings beginning from the initial state until all states are found, then inserting

clock active Boolean variables based on the presets of transitions and the Boolean portion

of the enabling conditions.

The initial Boolean state is constructed in a straightforward manner based on M0, S0,

and R0 as shown in the algorithm in Figure 3.1. For the integrator example in Figure 2.5,

the initial Boolean state is calculated to be:

initBoolState = p0p1 p2 p3 p4 Vin fail V̇ out [18,22] V̇ out [−22,−18]

After finding the initial Boolean state, the four sets of Boolean expressions representing

all predecessors marked (APM ), no predecessors marked (NPM ), all successors marked

(ASM ), and no successors marked (NSM ) are calculated. These Boolean expressions are

constructed from the LHPN using the algorithm shown in Figure 3.2, and are used to

simulate transition firings when calculating the Boolean state space. This is demonstrated
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buildInitBoolState(〈P, T,B, V, F, L,M0, S0, Q0, R0〉)
initBoolState = true
// Initial marking

for each (p ∈ P )
if (p ∈M0)

initBoolState = initBoolState ∧ p
else

initBoolState = initBoolState ∧ p
end if

end for
// Initial Boolean signal values

for each ((b, val) ∈ S0)
if (val == true)

initBoolState = initBoolState ∧ s
else if (val == false)

initBoolState = initBoolState ∧ s
end if

end for
// Initial Boolean rate variable values

for each ((v, rl, ru) ∈ R0)
initBoolState = initBoolState ∧ v̇[rl,ru]

for each (x ∈ BR(v)− v̇[rl,ru])
initBoolState = initBoolState ∧ x

end for
end for
return initBoolState

end

Figure 3.1. Algorithm for constructing the initial state of the LHPN.

by firing transition t1 in the the integrator example from Figure 2.5. The following

Boolean expressions are first constructed:

APM t1 = p2

NPM t1 = p2

ASM t1 = p3Vin

NSM t1 = p3Vin

By cofactoring with respect to an APM t1 , the set of states which enabled that transition

are calculated. Additionally, the preset places are removed from the expression. In the

example, cofactoring the initial state by APM t1 results in:

initBoolStateAPM t1
= p0p1 p3 p4 Vin fail V̇ out [18,22] V̇ out [−22,−18]

Next, taking the product of the result and NPM t1 simulates the removal of the tokens
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buildTransStatements(〈P, T,B, V, F, L,M0, S0, Q0, R0〉)
transStatements = ∅
for each (t ∈ T )

// Marking

APM t =
V

pi∈•t pi

NPM t =
V

pi∈•t pi

ASM t =
V

pi∈t• pi

NSM t =
V

pi∈t• pi

// Boolean Assignments

for each ((b, true) ∈ BA(t))
ASM t = ASM t ∧ b
NSM t = NSM t ∧ b

end for
for each ((b, false) ∈ BA(t))

ASM t = ASM t ∧ b
NSM t = NSM t ∧ b

end for
// Rate Assignments

for each ((v, rl, ru) ∈ RA(t))
ASM t = ASM t ∧ v̇[rl,ru]

NSM t = NSM t ∧ v̇[rl,ru]

for each (x ∈ BR(v)− v̇[rl,ru])
ASM t = ASM t ∧ x
NSM t = NSM t ∧ x

end for
end for
// Boolean Portion of Enablings

originalAPM = APM t

originalNPM = NPM t

if (boolPortion(En(t))
transStatements = transStatements ∪ 〈APM t,NPM t,ASM t,NSM t〉

else
for each (product ∈ boolPortion(En(t)))

APM t = originalAPM
NPM t = originalNPM
for each (b ∈ B)

if (b ∈ product)
APM t = APM t ∧ b
NPM t = NPM t ∧ b

else if (b ∈ product)
APM t = APM t ∧ b
NPM t = NPM t ∧ b

end if
end for
transStatements = transStatements ∪ 〈APM t,NPM t,ASM t,NSM t〉

end for
end if

end for
return transStatements

end

Figure 3.2. Algorithm for constructing characteristic functions used by findDisStates.
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from the preset places. In the examples, this results in:

initBoolStateAPM t1
∧NPM t1 = p0p1 p2 p3 p4 Vin fail V̇ out [18,22] V̇ out [−22,−18]

The next step is to existentially abstract the corresponding NSM from the result. This

has the effect of removing the successor places and variables to which Boolean assignments

are being performed. Existentially abstracting NSM t1 from the example, results in:

∃NSMt1
(initBoolStateAPM t1

∧NPM t1) = p0p1 p2 p4 fail V̇ out [18,22] V̇ out [−22,−18]

The final step is to apply the corresponding ASM . This has the effect of placing tokens

in the postset places and applying the Boolean assignments. The final result is the next

state:

(∃NSMt1
(initBoolStateAPM t1

∧NPM t1)) ∧ASM t1 =

p0p1 p2 p3 p4 Vin fail V̇ out [18,22] V̇ out [−22,−18]

Note that in this brief example, no Boolean rate variable updates or Boolean enabling

conditions are present; however, they are updated and enforced as transition firings are

applied in a similar manner. The complete algorithm for finding the discrete states is

shown in Figure 3.3. The discrete state space for the integrator example in Figure 2.5 is:

Φ = (p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22]) ∨

(p0 p1 p2 p3 p4 fail VinV̇ out [−22,−18] V̇ out [18,22])

After calculating the discrete state space, Φ, the next step in constructing the system

invariant, φI , as shown in Equation 3.1 is to insert known information about the contin-

uous state space. This is performed using the clock active variables. Specifically, for a

transition’s clock to be active, the preset must be marked, the enabling condition must be

satisfied, and the clock must be greater than zero but not greater than its upper bound.
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findDiscreteStates(initStates, transStatements)
reached = initStates
from = initStates
do

to = false
for each (〈APM i,NPM i,ASM i,NSM i〉 ∈ transStatements)

to = ∃NSM i(fromAPM i
∧NPM i) ∧ASM i

end for
from = to − reached
reached = reached ∨ from

while (from 6= false)
return reached

end

Figure 3.3. Algorithm for constructing Φ.

This portion of φI prevents an active clock from exceeding its upper bound. The last part

of φI states that if a transition’s clock is not active it must either have an unmarked place

in its preset or the nonstrict inverse (Ẽn(t)) of the enabling condition must be satisfied.

In the nonstrict inverse, all ≥ separation predicates become ≤ separation predicates

and vice-versa. For example, the nonstrict inverse of the HSL formula a ∧ x ≤ 2000 is

a ∨ x ≥ 2000. The last two portions of φI when taken together enforce the activation

or deactivation of a clock if a changing continuous variable should cause an enabling

condition to change evaluation. For the integrator example in Figure 2.5, the invariant is

calculated to be:

φI = Φ ∧ (at0 ⇒ p0 ∧Vin ∧ ct0 = 0) ∧ (at0 ⇒ p0 ∨Vin) ∧

(at1 ⇒ p1 ∧Vin ∧ ct1 = 0) ∧ (at1 ⇒ p1 ∨Vin) ∧

(at2 ⇒ p2 ∧ 0 ≤ ct2 ≤ 100) ∧ (at2 ⇒ p2) ∧

(at3 ⇒ p3 ∧ 0 ≤ ct3 ≤ 100) ∧ (at3 ⇒ p3) ∧

(at4 ⇒ p4 ∧ ct4 = 0 ∧

(Vout ≤ −2000 ∨Vout ≥ 2000)) ∧

(at4 ⇒ p4 ∨ (Vout ≥ −2000 ∧Vout ≤ 2000))

3.3 Possible Rate Sets

The set of possible rates (R) consists of an HSL statement indicating a possible

Boolean rate assignment and the set of rate assignments to continuous variables corre-

sponding to the statement (〈φR, R〉). This set is constructed from Φ, the Boolean state

set, by existentially abstracting all nonrate Boolean variables. Each product term in Φ
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corresponds to a φR of a pair in R. The Boolean rate assignment sets (R) are built from

the product terms as shown in the algorithm in Figure 3.4. First a conjunction of the

nonrate Boolean variables is constructed. Next, for each product term in the Boolean

state, the Boolean variables are existentially abstracted, resulting in a conjunction of

Boolean rate variables. For each Boolean rate variable that appears in the positive form,

a mapping of the continuous variable to the rate range is created. For example, the

possible rate set for the integrator LHPN in Figure 2.5 is:

R = {〈V̇ out [−22,−18] ∧ V̇ out [18,22], {V̇ out := [−22,−18]}〉,

〈V̇ out [−22,−18] ∧ V̇ out [18,22], {V̇ out := [18, 22]}〉}

3.4 Guarded Commands

The set of guarded commands (C) is used to determine in each state which transitions

are enabled and the effect on the state due to the firing of a transition. It is constructed

using a set of primary guarded commands (CP ) and a set of secondary guarded commands

(CS). Each guarded command consists of a guard, φG , represented using an HSL formula

and a set of commands, A, to be performed when the guard is satisfied.

A primary guarded command is created for each transition t ∈ T . The guard for

transition t ensures that the preset for t is marked, the enabling condition on t is satisfied,

and the clock associated with t is active and exceeds its lower bound. The commands for

transition t cause the postset of t to become marked and the application of the assignments

associated with t. Formally, the set of primary guarded commands is defined as follows:

CP = {〈φGP
(t),AP (t)〉 | t ∈ T} (3.2)

buildPossibleRateSet(Φ)

boolVars =
Q

p∈P p ∧
Q

b∈B b ∧
Q

t∈T at

R = ∅
for each (product term in Φ)

φR = Φ.ExistAbstract(boolVars)
R = {v̇ := [rl, ru] | ∃v̇[rl,ru] ∈ BR.(φR ∧ v̇[rl,ru])}
R = R∪ 〈φR, R〉

end for
return R

end

Figure 3.4. Algorithm for constructing the possible rate set, R.
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where φGP
(t) = (•t∧ t • − • t∧En(t)∧at∧ ct ≥ l(t)) and AP (t) = {(•t− t•) := F, (t•) :=

T, at := F, ct := [−∞,∞],BA(t),VA(t),RA(t)}. The primary guarded command for

transition t2 in Figure 2.5 is:

φGP
(t2) = p2 ∧ p3 ∧ at2 ∧ ct2 ≥ 100

AP (t2) = {p2 := F, p3 := T,Vin := T,

at2 := F, ct2 := [−∞,∞]}

Two secondary guarded commands are created for each transition t ∈ T , one to

activate and one to deactivate the clock associated with t. The first one activates the

clock for t and sets it to zero when its preset is marked and its enabling condition is true.

The second one deactivates the clock when t is no longer enabled and sets its values to

[−∞,∞]. This has the effect of removing the clock from the state space. The set of

secondary guarded commands is defined as follows:

CS = {〈φGSA
(t),ASA(t)〉, 〈φGSD

(t),ASD(t)〉 | t ∈ T} (3.3)

where φGSA
(t) = •t∧En(t)∧at, ASA(t) = {at := T, ct := [0, 0]}, φGSD

(t) = (•t∨ Ẽn(t))∧

at, and ASD(t) = {at := F, ct := [−∞,∞]}. The activating and deactivating guarded

commands for transition t0 in Figure 2.5 are:

φGSA
(t0) = p0 ∧Vin ∧ at0

ASA(t0) = {at0 := T, ct0 := [0, 0]}

φGSD
(t0) = (p0 ∨Vin) ∧ at0

ASD(t0) = {at0 := F, ct0 := [−∞,∞]}

The sets CP and CS are merged to form the set C. It is necessary to merge these

commands because the firing of a transition may result in the activation or deactivation

of clocks associated with other transitions by changing the marking or the values of the

Boolean or continuous variables. The basic idea is that for each transition, t, the effect

of its assignments associated with its primary guarded command AP (t) must be checked

against the guards φGSA
(t′) and φGSD

(t′) for each other transition t′ to determine if the

assignment may have enabled the guard. If the assignments have no effect on the guard or

disable it, then the secondary for t′ is not merged with the primary for t. If the assignment

would make the guard true, then the commands associated with the secondary must be
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combined with those for the primary. Finally, if the assignment may have changed the

guard’s evaluation, then two guarded commands must be constructed. One is for the

case in which the guard for the secondary is true in which the commands are merged,

and the other is for when the guard is false in which the secondary commands are not

merged. A detailed algorithm for merging guarded commands is shown in Figure 3.5.

Note that after performing the merge operation, secondary guarded commands whose

guards contain inequalities are inserted into the final guarded command set. This is

necessary because as time moves forward, the secondary guarded commands could become

enabled and cause clocks to be activated or deactivated. However, before the secondary

guarded commands are added, their guards must be modified to enforce the threshold on

the continuous variables. The algorithm for modifying the guards to enforce thresholds

is shown in Figure 3.6. For example, consider a situation where a transition has the

enabling condition x ≥ 5. The clock on this transition can be activated either when its

preset becomes marked when x is already greater than or equal to five, or by x becoming

equal to five while the preset is already marked. The first case is handled by the merged

guarded command while the second case should be handled by a secondary guarded

command that ensures that x is equal to five and continues to increase above five, i.e.,

when x ≥ 5∧ x ≤ 5∧ incr(x) where incr(x) returns the disjunction of the Boolean rate

variables where the rates are increasing. Similarly, the algorithm in Figure 3.6 makes use

of decr(x) which returns a disjunction of the Boolean rate variables where x is decreasing.

In the integrator example (see Figure 2.5), since the primary guarded command for

t2 assigns Vin to true, a condition in the guard of the activating guarded command on

t0, they are merged into the guarded command shown below:

φG(t2, t0) = p0 ∧ p2 ∧ p3 ∧ at0 ∧ at2 ∧ ct2 ≥ 100

A(t2, t0) = {p2 := F, p3 := T,Vin := T,

at0 := T, ct0 := [0, 0],

at2 := F, ct2 := [−∞,∞]}

3.5 Specifying Properties

Properties to be checked are specified using a dense real-time version of CTL, a

branching time logic, known as timed computation tree logic (TCTL) that has been

extended with clock variables. The formal syntax and semantics of TCTL is described in

[50]. The syntax is reproduced here as follows:
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mergeGuardedCommands(CP , CS)

C = CP

for each (〈φG ,A〉 ∈ C)
for each (〈φGS ,AS〉 ∈ CS)

if (φGS [A] == φGS )
// Assignments do not effect secondary guarded command so do nothing.

continue;
else if (φGS [A] == false)

// Assignments disable secondary guarded command so do nothing.

continue;
else if (φGS [A] == true)

// Assignments immediately enable secondary guarded command so

// firing 〈φG ,A〉 should result in immediate firing of 〈φGS ,AS〉.
A = A ∪AS

else
// Assignments did effect the secondary guard so it may be

// necessary to modify the guarded command or create

// a new guarded command.

if (φG ∧ φGS [A] == false)
// The secondary guard with assignments applied still does not

// enable guarded command so do nothing.

continue;
end if
if (φG ∧ ¬φGS [A]! = false)

// Is it possible for the primary guarded command and the

// inverse of the secondary guarded command to be satisfied

// simultaneously? If so, there are two cases.

φ′G = φG ∧ ¬φGS [A]
A′ = A
C = C ∪ 〈φ′G ,A′〉

else
φG = φG ∧ φGS [A]
A = A ∪AS

end if
end if

end for
end for
for each (〈φGS ,AS〉 ∈ CS)

if (φGS contains separation predicates)

// Time elapse could enabled these guarded commands so they must

// be included.

C = C ∪ 〈enforceThreshold(φGS ),AS〉
end if

end for
return C

end

Figure 3.5. Algorithm for merging the primary and secondary guarded commands.
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enforceThreshold(φGS)

φ′GS
= true

for each (product term p ∈ φGS)

for each (inequality i ∈ p in the form v ≥ c)
φ = p.Cofactor(i)
φ = φ ∧ (v ≥ c) ∧ (v ≤ c) ∧ incr(v)
φ′GS

= φ′GS
∨ φ

end for
end for
for each (product term p ∈ φGS)

for each (inequality i ∈ p in the form v ≤ c)
φ = p.Cofactor(i)
φ = φ ∧ (v ≥ c) ∧ (v ≤ c) ∧ decr(v)
φ′GS

= φ′GS
∨ φ

end for
end for
return φ′GS

end

Figure 3.6. Modifies secondary guarded command’s guard to enforce threshold.

ϕ ::= φ | ¬ϕ | ϕ1 ∨ ϕ2 | E[ϕ1 U ϕ2] | A[ϕ1 U ϕ2] | z.ϕ

In this formulation of TCTL, where φ is an HSL formula, a set of specification clocks

is created where z is a member and “z.” is the reset quantifier. Specification clocks do

not control the behavior of the system and are used to express timing requirements of

a specification. The reset quantifier causes z to be assigned to zero. The operations

E[ϕ1 U ϕ2] and A[ϕ1 U ϕ2] represent the notions of possibly and inevitably, respectively.

Intuitively, E[ϕ1 U ϕ2] holds in a state if ϕ2 becomes true on some path from that state

and ϕ1 is true until ϕ2 becomes true. Similary, A[ϕ1 U ϕ2] holds in a state if ϕ2 becomes

true on every path from that state and ϕ1 is true until ϕ2 becomes true. In addition to the

operators included in the formal syntax, additional arithmetic, Boolean, and temporal

operators can be defined in terms of the formal syntax. For example, the temporal

operators EF ϕ and AG ϕ are equivalent to E[true U ϕ] and ¬(EF ¬ϕ), respectively, and

the temporal operators AF ϕ and EG ϕ are equivalent to A[true U ϕ] and ¬(AF ¬ϕ),

respectively.

Revisiting the integrator example, the property to specify that a state where fail

is never reached can be specified in TCTL as φinit =⇒ AG(¬fail). This property is

automatically generated from the assert statement in the VHDL-AMS code. More

complex properties can be manually provided by the user, if desired.

The model checking algorithm proceeds over the structure of Tµ calculus formula, a

language for expressing properties of systems using least and greatest fixpoint operators.
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This property of the specification language is important because several symbolic model

checking methods (including the BDD based approach described in Chapter 4) do not

allow for manipulation of individual states as is required for temporal logic specifications.

Therefore, the TCTL property is first translated into a Tµ formula. Tµ calculus has the

following grammar, as defined in [50]:

ϕ ::= Y | φ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 . ϕ2 | z.ϕ | µY.ϕ | νY.ϕ

where φ is an HSL formula, z is a specification clock variable, and Y is a formula variable

used in fixpoint computation. The next operator “.” means that ϕ1 is true as time elapses

until a discrete transition is taken resulting in ϕ2. When the specification clock variable z

is assigned to zero in ϕ, z.ϕ is true. The expressions µY.ϕ and νY.ϕ are the least fixpoint

and greatest fixpoint, respectively, of ϕ with the formula variable Y bound inside ϕ.

The methods for specifying all TCTL requirements as fixpoints of Tµ are described in

detail in [50] and are briefly included here for completeness. First, each subformula of the

form A[ϕ1 U ϕ2] is replaced with the formula µY.(ϕ2∨¬z.(E[(¬Y ) U (¬(ϕ1∨Y )∨z > c)]))

where c is any integer constant greater than zero. Note that the value of c may impact

the number of iterations performed by the fixpoint computation in the model checking

algorithm. Next, each subformula of the form E[ϕ1 U ϕ2] is replaced with the formula

µY.(ϕ2 ∨ (ϕ1 . Y )).

Given this translation process, the property for the integrator in Figure 2.5 is trans-

formed into the following Tµ formula:

φinit =⇒ ¬µY.[fail ∨ (true . Y )]

where φinit is the initial set of states:

φinit = p0 p1 p2 p3 p4 Vin FailV̇ out [−22,−18] V̇ out [18,22]

at0 at1 at2 at3 at4 ∧ ct2 = 0 ∧ V out = −1000

If a state in which fail is true cannot be reached from the initial state then the formula

evaluates to true.



CHAPTER 4

BDD BASED MODEL CHECKER

Henzinger et al. developed a model checking algorithm for timed automata which

proceeds recursively over the structure of Tµ calculus formulas in [50]. This algorithm is

shown in Figure 4.1. Basic Boolean operations are performed by recursively applying

the algorithm to each portion of the Tµ calculus formula and then performing the

necessary Boolean operation on the results. The base case is when an HSL formula

is reached. In this case, the model’s invariant is applied to remove obviously unreachable

behavior. The next portion of the algorithm is ., the next-state calculation. There are

two central components used when calculating the next-state: the weakest precondition

calculation (pre) which is responsible for determining which states could have been

reached by firing discrete transitions, and the time elapse calculation (;) which evolves

continuous variables. The clock specification portion of the algorithm (z.ϕ) is performed

by evaluating ϕ and then setting the clock variable z to zero. The final portion of

|φ| := φI ∧ φ
|¬ϕ| := φI ∧ ¬|ϕ|

|ϕ1 ∨ ϕ2| := |ϕ1| ∨ |ϕ2|
|ϕ1 . ϕ2| := |(|ϕ1| ∨ |ϕ2|) ; pre(|ϕ2|)|

|z.ϕ| := |ϕ|[z := 0]
|µY.ϕ| := the result of the following iteration:

φnew := false

repeat

φold := φnew

φnew := |ϕ[Y := φold ]|
until (φnew =⇒ φold )
return φold

Figure 4.1. Symbolic analysis algorithm for Tµ calculus (courtesy of [50]).
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the algorithm is the fixpoint computation which iteratively subsitutes the result of the

previous iteration for the fixpoint variable Y until the result no longer changes.

Upon termination of the algorithm, the resulting HSL formula is equivalent to the

invariant φI if the system does not violate the property and the model is non-Zeno

[1] (i.e., that the model never reaches a state where time can progress no further). The

models discussed in this dissertation can be verified to be non-Zeno for a specified amount

of time by testing if a transition that is forced to fire after a specified amount of time

fires. Additionally, it must be noted to avoid confusion that this algorithm performs the

state exploration in a backwards fashion beginning from a set of error states as shown in

Figure 4.2. Beginning from the error states, a state space exploration is performed in a

backwards fashion. If it is found that the initial state intersects the found states, an error

state can be reached from the initial state meaning that the property has been violated.

The core algorithm in Figure 4.1 was later applied to the verification of embedded

system by Alur et al. in [8]. However, in order to support the linear hybrid automata

model, a more general model than the timed automata used by Henzinger et al., the

symbolic model is adapted to support continuous variables that can change at rates other

than one, and the time elapse calculation is enhanced to support the ability for continuous

variables to change at rates other than one.

One interesting recent development is the use of this algorithm to model check timed

automata using Binary Decision Diagrams (BDDs) [3] as the state space representation

by Seshia et al. [65]. A BDD is a directed graph representation of a Boolean function. The

Error States

Initial States

Figure 4.2. Backwards model checking.
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graph consists of decision nodes with two outgoing edges and two terminals representing

true and false. Each decision node is labeled with a particular Boolean variable and

the edges represent assignments of true or false to that variable. Most current BDD

implementations place an ordering on the variables and apply basic reduction rules to

the graph. Therefore, the term BDD normally refers to Reduced Ordered Binary Decision

Diagrams (ROBDDs) [22]. These two additions resulted in an efficient data structure

and algorithms to perform Boolean operations on this data structure that are frequently

used in digital logic synthesis and verification tools, among others. Significant research

has also been performed into how the variable ordering impacts the size of a Boolean

function’s BDD representation. While this research could potentially be utilized to

improve performance of the methods described in this chapter, significant effort has not

been devoted to investigating that potential.

In [65], Seshia and Bryant describe a Boolean symbolic model checking procedure for

real-time systems where separation predicates are mapped to Boolean variables and real

variables can only change at a rate of one. The analysis proceeds using Boolean operations

with the regular addition of Boolean variables representing transitivity relations. This

dissertation extends these works by using the ideas presented in [65] to use Boolean

methods for the verification of more general hybrid systems where real variables can

change at any rate within a range allowing for modeling and verification of analog and

mixed-signal circuits. In order to achieve this goal, restrictions are first placed upon

separation predicates present in HSL formulas to ensure a canonical form. These canonical

separation predicates are then mapped to BDD variables, resulting in a purely Boolean

HSL representation. Several BDD packages including BuDDy [28] and CUDD [68] are

available for the implementation of this algorithm. BDD packages typically offer similar

functionality; therefore the main differentiating factors are performance, implementation

language, platform availability, and stability. Due to its wide spread use, competitive per-

formance, and maturity, the CUDD library is used to implement this chapter’s algorithms.

Due to the Boolean representation of HSL formulas, the algorithm of Figure 4.1 requires

several modifications. For example, it is necessary to insert constraints relating Boolean

variables that map to separation predicates. This is necessary to reduce redundancy and

eliminate contradictions among separation predicates. Constraint construction is a very

expensive operation; therefore constraints are not formed as frequently as is necessary to

ensure exactness of the algorithm. This results in a model checking algorithm that while
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conservative in nature has dramatically improved performance. The remainder of this

chapter describes each component of the BDD based model checking algorithm in detail.

The overall algorithm for performing BDD based model checking of LHPNs, which is

very similar to the original model checking algorithm presented in Figure 4.1, is shown in

Figure 4.3. This algorithm proceeds recursively over the structure of ϕ, a Tµ property,

given the symbolic model for the system to be verified. The symbolic model consists

of the initial state (φinit), the invariant (φI), the guarded command set (C), and the

possible rate sets (R). When ϕ is an HSL formula, the system invariant is applied to

it to remove portions of the state space that are certain to be unreachable. The cases

for handling negation and disjunction in the Tµ formula are performed by recursively

applying bddCheck to the subformulas and then performing the necessary action on the

results. In the least fixpoint calculation, Y is a formula variable bound inside the portion

of the Tµ formula ϕ. The fixpoint proceeds by substituting Y for φold which starts out

as false. The bddCheck algorithm is applied to the substituted form of ϕ.

// φinit - Global variable representing initial state of LHPN (Boolean HSL formula)

// φI - Global variable representing LHPN invariant (Boolean HSL formula)

// C - Global variable representing LHPN guarded command set

// R - Global variable representing LHPN possible rate set

bddCheck(ϕ)
// ϕ - Tµ property under verification

switch type of ϕ’s expression

case φ
return φI ∧ φ

case ¬ϕ
return φI ∧ ¬bddCheck(ϕ)

case ϕ1 ∨ ϕ2

return bddCheck(ϕ1) ∨ bddCheck(ϕ2)
case ϕ1 . ϕ2

φ1 = bddCheck(ϕ1) ∨ bddCheck(ϕ2)
φ2 = pre(bddCheck(ϕ2), φI , C)
return bddCheck(timeElapse(φ1 , φ2 , φI ,R))

case z.ϕ
φ1 = bddCheck(ϕ)
return specifyClock(z, φ1 )

case µY.ϕ
φnew = false
do

φold = φnew

φnew = simplifyRestrict(bddCheck(substitute(ϕ, Y, φold)))
while (¬simplifyRestrict(checkImplication(φnew , φold)))
return φold

end switch

Figure 4.3. BDD based model checking algorithm (adapted from [65]).
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This chapter is devoted to first describing the method by which HSL is mapped to

a Boolean representation and the issues associated with this representation. Specifi-

cally, specialized algorithms are used to attempt to reduce the current size of the state

representation and to determine if one HSL formula implies another. These algorithms

are referred to as simplifyRestrict and checkImplication, respectively. Given the

Boolean representation, the core components of the model checking algorithm: clock

specification (specifyClock), transition precondition (pre), and progression of time

(timeElapse), are described. Additionally, approaches for performing an optimized time

elapse and for generating error traces are presented.

4.1 Representing HSL Formulas Using BDDs

The verification algorithm relies on performing Boolean operations using BDDs. Thus,

it is necessary to efficiently represent HSL formulas as Boolean formulas. The details of

this Boolean representation are presented in this section. First, a method for generating

canonical separation predicates, which are then mapped to BDD variables, is described.

Given this Boolean representation, it is necessary to periodically construct Boolean

constraints among the separation predicates. Additionally, the simplifyRestrict and

checkImplication algorithms are detailed.

4.1.1 Canonical Separation Predicates

An approach for generating canonical separation predicates which is similar to that

suggested for octagonal polyhedra in [56] is described in this section. A canonical

representation is necessary so that 2x1 ≥ x2 + 1 maps to the same BDD variable as the

equivalent separation predicate with different coefficients 4x1 ≥ 2x2 + 2. The canonical

representation is of the form c1x1 ≥ c2x2 + c3 with the following restrictions where x0 is

a special variable representing zero:

• The continuous variables x1 and x2 are distinct.

• If x1 = x0 or x2 = x0 then the corresponding constant c1 or c2 is one.

• The constants c1 and c2 are not both negative.

• If c1 or c2 is negative (but not both), then in the ordered set of real variables, x1

comes before x2.
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• The constant c1 has an absolute value of one, and the constants c2 and c3 are rational

numbers using arbitrarily large integers as the numerator and the denominator.

Using the special variable x0 and the fact that separation predicates of the form c1x1 >

c2x2 + c3 are equivalent to c2x2 ≥ c1x1 +−c3, the above form with the restrictions can

represent any linear separation predicate between two real variables in a unique way.

Table 4.1 shows the calculations for constructing the canonical form of a separation

predicate. It is assumed that the separation predicate is provided in the form c1x1 ≥

c2x2 + c3 and that it is not trivially true or false. For example x ≥ x + 2 is trivially

false. Note that if both real variables x1 and x2 are x0, the separation predicate is always

trivially true or false so Table 4.1 does not account for this case. The table also assumes

that separation predicates where x1 equals x2 are first rewritten as separation predicates

in terms of x0.

For each canonical separation predicate that is generated, a corresponding BDD

variable is created. Creation of this mapping of BDD variables to separation predicates

allows for an entirely Boolean representation of the state space. For clarity, throughout

the remainder of this chapter, separation predicates are shown; however those separation

predicates are actually being mapped to BDD variables representing the canonical form

of that separation predicate.

Table 4.1. Constructing canonical separation predicates. Given a separation predicate of
the form c1x1 ≥ c2x2+c3, this table shows the calculation, which results in the equivalent
canonical separation predicate.

x1 = x0 x1 6= x0 x1 6= x0 x2 6= x0

x2 6= x0 x2 = x0 x1 < x2 x1 > x2

c1 > 0
x2 ≥ x0 + c3

|c2| x1 ≥ x0 + c3
c1

x1 ≥ c2
c1
x2 + c3

c1
x2 ≥ −c1

|c2| x1 + c3
|c2|c2 < 0

c1 < 0
x0 ≥ x2 + c3

c2
x0 ≥ x1 + c3

|c1| −x1 ≥ c2
|c1|x2 + c3

|c1| −x2 ≥ −c1
c2
x1 + c3

c1c2 > 0
c1 > 0

x0 ≥ x2 + c3
c2

x1 ≥ x0 + c3
c1

x1 ≥ c2
c1
x2 + c3

c1c2 > 0
c1 < 0

x2 ≥ x0 + c3
|c2| x0 ≥ x1 + c3

|c1| x2 ≥ −c1
|c2| x1 + c3

|c2|c2 < 0
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4.1.2 Constraint Generation

As operations are performed on the state space and new separation predicates are

inserted into the representation, it is necessary to form additional Boolean relationships

among the new separation predicates and those that already exist. These new relation-

ships are referred to as constraints. This process is necessary for several reasons. First,

sets of separation predicates that are infeasible can be eliminated. For example, a portion

of the state space representation asserting x ≥ 2 and x ≤ 0 can be eliminated. Second,

when variables are removed from the state representation, it is necessary to ensure that

information is not lost. For example, consider a situation where the separation predicates

x ≥ y and y ≥ z are present in the state, but the continuous variable y is going to

be abstracted away. Abstracting y would result in the removal of these two separation

predicates and the loss of the implicit knowledge that x ≥ z. Third, application of

constraints may result in tighter relationships among variables. For example, if the

inequalities x ≥ y+2, y ≥ z+3, and x ≥ z+6 are present in the state representation, the

first two inequalities can be used to generate a tighter constraint stating that x ≥ z + 5.

This is again particularly important when a continuous variable is removed from the

state.

Two general types of constraints are constructed: transitivity constraints and impli-

cations constraints. As new separation predicates are generated and mapped to Boolean

variables, constraints are added to create relationships with existing variables. The first

type of constraint creates a transitivity relation between two separation predicates that

share a real variable and a third, newly created separation predicate. For example,

2x ≥ 3y + 5 ∧ 4y ≥ 5z + 5 ⇒
2
3
x ≥ y +

5
3
∧ y ≥ 5

4
z +

5
4

⇒ 2
3
x ≥ 5

4
z +

5
3

+
5
4

⇒ 8x ≥ 15z + 35

The second type of constraints are created between pairs of separation predicates where

one separation predicate implies the other. For example, 2x ≥ 3y + 5 ⇒ 2x ≥ 3y + 4

and 2x > 3y+ 5 ⇒ 2x ≥ 3y+ 5. Note that during constraint generation, the normal and

inverted forms of the separation predicates must be considered.

The algorithm for generating all constraints for a specified variable x and HSL ex-

pression φ represented as a BDD is shown in Figure 4.4. A similar algorithm that

generates all the constraints and applies them to the initial BDD is shown in Fig-
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ure 4.5. These algorithms operate by iterating through each pair of BDD variables in

the support of φ that map two separation predicates containing x, the real variable over

which constraints are being generated. It then determines if implication constraints and

transitivity constraints exist between those two separation predicates. The methods for

finding these constraints are discussed later in this section. The algorithm in Figure 4.4

returns a conjunction of the newly formed constraints. The algorithm in Figure 4.5

returns a conjunction of φ, the BDD that is passed into the function, and the new

constraints. These algorithms require a real variable to be specified as the variable over

which constraints should be generated because constraints are generally applied before

removing potentially important separation predicates over specific variables. By only

adding constraints over real variables that are being removed, the goal is to reduce the

number of new separation predicates and thus the number of BDD variables that get

getConstraints(φ, x)
// Iterate through all pairs of separation predicates containing x and form

// conjunction of all constraints.

for each BDD variable φi ∈ φ mapping to separation predicate containing x
for each BDD variable φj ∈ φ mapping to separation predicate containing x

if (φi == φj) continue

φcons = φcons ∧ implies(φi , φj )
φcons = φcons ∧ trans(φi , φj , x)

end for
end for
return φcons

Figure 4.4. Finds constraints for a given real variable x over φ.

addConstraints(φ, x)
// Iterate through each discrete marking and generate transitivity

// constraints for that portion of φ
for each product term φi ∈ Φ

φpart = φ ∧ φi

for each BDD variable φj ∈ φpart mapping to separation predicate containing x
for each BDD variable φk ∈ φpart mapping to separation predicate containing x

if (φj == φk) continue

φpart = φpart ∧ implies(φj , φk )
φpart = φpart ∧ trans(φj , φk , x)

end for
end for
φresult = φresult ∨ φpart

end for
return φresult

Figure 4.5. Adds constraints for a given real variable x to φ.
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built.

The algorithm for finding implication constraints between two separation predicates,

φ1 and φ2 , is shown in Figure 4.6. This algorithm makes use of four additional functions

shown in Figure 4.7. When forming implication constraints, the real variables and slopes

of each separation predicate must match. The function timpliest considers the two sepa-

ration predicates in their true form where both separation predicates are “≥” inequalities

and fimpliesf considers the two separation predicates in their false form where both

separation predicates are “<” inequalities. The final two algorithms, timpliesf and

fimpliest, handle the situations when one or the other separation predicate is inverted

and is thus a “<” inequality, and the other is in the noninverted, “≥” inequality. In

this case, it is slightly more complicated to determine if an implication relationship exists

due to the canonical form of the separation predicates. Specifically, the possibility of a

negative constant must be considered. For example, an implication constraint can be

formed between the two inequalities −2x1 ≥ 3x2 + 4 and 2x1 ≥ −3x2 +−3 by inverting

the second constraint and multiplying it through by −1. This results in the implication

constraint −2x1 ≥ 3x2 + 4 ⇒ −2x1 > 3x2 + 3.

The algorithm for finding transitivity constraints between two separation predicates,

φ1 and φ2 , with the real variable x as the variable over which transitivity is formed,

referred to as the pivot variable, is shown in Figure 4.8. However, transitivity constraints

can also be generated given two arbitrary separation predicates without specifying a

pivot value as shown in Tables 4.2 and 4.3. A tabular form of the conditions under

which a transitivity constraint can be constructed between two true separation predicates

implies(φ1, φ2)

if (timpliest(φ1, φ2))

φresult = φresult ∧ (¬φ1 ∨ φ2 )
end if
if (fimpliesf(φ1, φ2))

φresult = φresult ∧ (φ1 ∨ ¬φ2 )
end if
if (timpliesf(φ1, φ2))

φresult = φresult ∧ (¬φ1 ∨ ¬φ2 )
end if
if (fimpliest(φ1, φ2))

φresult = φresult ∧ (φ1 ∨ φ2 )
end if
return φresult

Figure 4.6. Finds implication constraints among φ1 and φ2 .
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timpliest(φ1, φ2)

φ1 maps to the separation predicate c1x1 ≥ c2x2 + c3
φ2 maps to the separation predicate c4x4 ≥ c5x5 + c6
if (x1 == x4 ∧ x2 == x5 ∧ c1 == c4 ∧ c2 == c5 ∧ c3 > c6)

return true
end if
return false

fimpliesf(φ1, φ2)

return timplifest(φ2, φ1);

timpliesf(φ1, φ2)

φ1 maps to the separation predicate c1x1 ≥ c2x2 + c3
φ2 maps to the separation predicate c4x4 ≥ c5x5 + c6
if (c1 > 0 ∧ c2 > 0 ∧ c4 > 0 ∧ c5 > 0)

if (x1 == x5 ∧ x2 == x4 ∧ c2
c1

== c4
c5
∧ c3

c1
> − c6

c5
)

return true
end if

else if ((c1 < 0 ∧ c2 > 0 ∧ c4 > 0 ∧ c5 < 0) ∨ (c1 > 0 ∧ c2 < 0 ∧ c4 < 0 ∧ c5 > 0))
if (x1 == x4 ∧ x2 == x5 ∧ c1

c2
== c4

c5
∧ c3 > −c6)

return true
end if

end if
return false

fimpliest(φ1, φ2)

φ1 maps to the separation predicate c1x1 ≥ c2x2 + c3
φ2 maps to the separation predicate c4x4 ≥ c5x5 + c6
if (c1 > 0 ∧ c2 > 0 ∧ c4 > 0 ∧ c5 > 0)

if (x1 == x5 ∧ x2 == x4 ∧ c1
c2

== c5
c4
∧ − c3

c2
> c6

c4
)

return true
end if

else if ((c1 < 0 ∧ c2 > 0 ∧ c4 > 0 ∧ c5 < 0) ∨ (c1 > 0 ∧ c2 < 0 ∧ c4 < 0 ∧ c5 > 0))
if (x1 == x4 ∧ x2 == x5 ∧ c1

c2
== c4

c5
∧ −c3 > c6)

return true
end if

end if
return false

Figure 4.7. Algorithms to determine if φ1 implies φ2 in their regular and negated forms.
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trans(φ1, φ2, x)
φ1 maps to the separation predicate c1x1 ≥ c2x2 + c3
φ2 maps to the separation predicate c4x4 ≥ c5x5 + c6
// Is first separation predicate in true or false form for transitivity relation?

if (x1 == x ∧ c1 > 0)
xi = x2; ci = c2/c1; c = −c3/c1
p1inverted = true

else if (x1 == x ∧ c1 < 0)
xi = x2; ci = c2/c1; c = −c3/c1
p1inverted = false

else if (x2 == x ∧ c2 > 0)
xi = x1; ci = c1/c2; c = c3/c2
p1inverted = false

else if (x2 == x ∧ c2 < 0)
xi = x1; ci = c1/c2; c = c3/c2
p1inverted = true

else
return true

end if
// Is second separation predicate in true or false form for transitivity relation?

if (x4 == x ∧ c4 > 0)
xj = x5; cj = c5/c4; c = c+ c6/c4
p2inverted = false

else if (x4 == x ∧ c4 < 0)
xj = x5; cj = c5/c4; c = c+ c6/c4
p2inverted = true

else if (x4 == x ∧ c4 > 0)
xj = x4; cj = c4/c5; c = c+−c6/c5
p2inverted = true

else if (x5 == x ∧ c5 < 0)
xj = x4; cj = c4/c5; c = c+−c6/c5
p2inverted = false

else
return true

end if

Figure 4.8. Finds transitivity constraints for φ1 and φ2 over a real variable.
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// Now form transitivity relation(s)

φnew1 maps to the separation predicate cixi ≥ cjxj + c
φnew2 maps to the separation predicate cjxj ≥ cixi +−c
if (¬p1inverted ∧ ¬p2inverted ∧ φnew1 ∈ φ)

φcons = φcons ∧ (¬(φ1 ∧ φ2 ) ∨ φnew1 )
else if (p1inverted ∧ p2inverted ∧ φnew2 ∈ φ)

φcons = φcons ∧ (¬(¬φ1 ∧ ¬φ2 ) ∨ ¬φnew2 )
else if (p1inverted ∧ ¬p2inverted)

if (φnew1 ∈ φ)
φcons = φcons ∧ (¬(¬φ1 ∧ φ2 ) ∨ ¬φnew1 )

end if
if (φnew2 ∈ φ)

φcons = φcons ∧ (¬(¬φ1 ∧ φ2 ) ∨ ¬φnew2 )
end if

else if (¬p1inverted ∧ p2inverted)

if (φnew1 ∈ φ)
φcons = φcons ∧ (¬(φ1 ∧ ¬φ2 ) ∨ ¬φnew1 )

end if
if (φnew2 ∈ φ)

φcons = φcons ∧ (¬(φ1 ∧ ¬φ2 ) ∨ ¬φnew2 )
end if

end if
return φcons

Figure 4.8 continued.
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Table 4.2. Constructing transitivity constraints between pairs of separation predicates.
The variables e1 and e2 correspond to c1x1 ≥ c2x2 +c3 and c4x4 ≥ c5x5 +c6, respectively.

e1 ∧ e2 ¬e1 ∧ ¬e2

x2 = x4 c2 > 0, c4 > 0 c1
c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
) c1

c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
)

c2 < 0, c4 < 0 c5
c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
) c5

c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
)

c2 > 0, c4 < 0 No Relation No Relation

c2 < 0, c4 > 0 No Relation No Relation

x1 = x5 c1 > 0, c5 > 0 c4
c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
) c4

c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
)

c1 < 0, c5 < 0 c2
c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
) c2

c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
)

c1 > 0, c5 < 0 No Relation No Relation

c1 < 0, c5 > 0 No Relation No Relation

x1 = x4 c1 > 0, c4 > 0 No Relation No Relation

c1 < 0, c4 < 0 No Relation No Relation

c1 > 0, c4 < 0 c5
c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
) c5

c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
)

c1 < 0, c4 > 0 c2
c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
) c2

c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
)

x2 = x5 c2 > 0, c5 > 0 No Relation No Relation

c2 < 0, c5 < 0 No Relation No Relation

c2 > 0, c5 < 0 c1
c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
) c1

c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
)

c2 < 0, c5 > 0 c4
c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
) c4

c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
)
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Table 4.3. Constructing transitivity constraints between pairs of separation predicates.
The variables e1 and e2 correspond to c1x1 ≥ c2x2 +c3 and c4x4 ≥ c5x5 +c6, respectively.

¬e1 ∧ e2 e1 ∧ ¬e2

x2 = x4 c2 > 0, c4 > 0 No Relation No Relation

c2 < 0, c4 < 0 No Relation No Relation

c2 > 0, c4 < 0 c5
c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
) c1

c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
)

c1
c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
) c5

c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
)

c2 < 0, c4 > 0 c1
c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
) c5

c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
)

c5
c4
x5 ≥ c1

c2
x1 + (−c6

c4
+ −c3

c2
) c1

c2
x1 ≥ c5

c4
x5 + ( c3

c2
+ c6

c4
)

x1 = x5 c1 > 0, c5 > 0 No Relation No Relation

c1 < 0, c5 < 0 No Relation No Relation

c1 > 0, c5 < 0 c2
c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
) c4

c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
)

c4
c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
) c2

c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
)

c1 < 0, c5 > 0 c4
c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
) c2

c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
)

c2
c1
x2 ≥ c4

c5
x4 + (−c3

c1
+ −c6

c5
) c4

c5
x4 ≥ c2

c1
x2 + ( c6

c5
+ c3

c1
)

x1 = x4 c1 > 0, c4 > 0 c2
c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
) c5

c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
)

c5
c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
) c2

c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
)

c1 < 0, c4 < 0 c5
c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
) c2

c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
)

c2
c1
x2 ≥ c5

c4
x5 + (−c3

c1
+ c6

c4
) c5

c4
x5 ≥ c2

c1
x2 + (−c6

c4
+ c3

c1
)

c1 > 0, c4 < 0 No Relation No Relation

c1 < 0, c4 > 0 No Relation No Relation

x2 = x5 c2 > 0, c5 > 0 c4
c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
) c1

c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
)

c1
c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
) c4

c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
)

c2 < 0, c5 < 0 c1
c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
) c4

c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
)

c4
c5
x4 ≥ c1

c2
x1 + ( c6

c5
+ −c3

c2
) c1

c2
x1 ≥ c4

c5
x4 + ( c3

c2
+ −c6

c5
)

c2 > 0, c5 < 0 No Relation No Relation

c2 < 0, c5 > 0 No Relation No Relation
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and two false separation predicates is shown in Table 4.2. Similarly, a tabular form of

the conditions under which a transitivity constraint can be constructed between two

separation predicates where one or the other is false is shown in Table 4.3. The table’s

cells show the new separation predicate that is constructed in the transitivity constraint.

As an example, consider the two separation predicates 2x ≥ 3y+5 and 2x ≥ 4z+8. Given

the variable x over which to form transitivity constraints, it must first be determined

whether each separation predicate should be in the inverted or noninverted form to create

the transitivity relationship. In this case, since 2x ≥ 3y+5 has x on the left-hand side of

the inequality, the separation predicate must be inverted to get x onto the right-hand size

of the inequality. This results in 3y > 2x−5. Similarly, the second separation predicate is

tested to check if it is the correct form to form transitivity constraints. Since x is already

on the left-hand side in this case, no modification is necessary. Once it is determined if the

separation predicates are in the proper form, the portions of the new separation predicate

can be calculated. Note that two separation predicates are created since one inequality

contains a “>” and the other contains a “≥”. After creating the separation predicates,

the original BDD is tested to see if they are already used within the BDD. If they are,

the transitivity constraints are inserted. Otherwise, they are ignored. In this case, the

transitivity constraints that are inserted are 3y > 2x − 5 ∧ 3x ≥ 4z + 8 ⇒ 9y ≥ 12z + 1

and 3y > 2x− 5 ∧ 3x ≥ 4z + 8 ⇒ 9y > 12z + 1.

4.1.3 Reducing BDD Size Using simplifyRestrict

The potential size of the state representation grows exponentially with each new BDD

variable that is created. Therefore, steps must be taken to try to reduce the size of the

BDD state representation as analysis proceeds. One of these steps is the use of the

simplifyRestrict operation. The algorithm for performing this action is shown in

Figure 4.9. This algorithm finds the constraints for each real variable in φ and uses the

BDD Restrict operation to remove paths in φ that violate those constraints. Details

about the BDD Restrict operation are shown in [29]. Briefly, as it traverses the φ, it

eliminates paths on which φcons is false as long as the resulting BDD is not enlarged. The

simplifyRestrict operation can be very time consuming, so it is applied only once for

each fixpoint iteration in the bddCheck algorithm.
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simplifyRestrict(φ)
for each (x ∈ {x0 ∪ V ∪ C})

φcons = getConstraints(φ, x);
φ = φ.Restrict(φcons)

end for
return φ

Figure 4.9. Algorithm for performing simplify restrict operation.

4.1.4 Checking Implication

In order to determine if one HSL formula implies a second HSL formula, it is necessary

for them to have equivalent support sets. Therefore, transitivity constraints are inserted

in terms of both φ1 and φ2 before the implication is determined. The algorithm for

performing this operation is shown in Figure 4.10.

4.2 Weakest Precondition

The weakest precondition operation, pre(φ), calculates all the possible states that

could have resulted in φ by firing discrete transitions. In particular, for each guarded

command, 〈φG ,A〉 ∈ C, it first performs the assignments (A) to the current set of states,

and then applies the guard (φG). By taking the disjunction of the result for each guarded

command, all possible previous states are determined. Finally, φ is disjunctively combined

with the result, and φI is conjunctively combined to ensure that impossible states are

not introduced into the calculation. This is defined formally below:

checkImplication(φ1, φ2)

// First form transitivity constraints around x0.

for each product term φi ∈ Φ
φpart = (φ1 ∨ φ2 ) ∧ φi

φcons = getConstraints(φpart , x0)
φ1 = φ1 ∧ φcons

φ2 = φ2 ∧ φcons

end for
// Now form transitivity constraints around all other real variables.

for each (x ∈ {V ∪ C})
for each product term φi ∈ Φ

φpart = (φ1 ∨ φ2 ) ∧ φi

φcons = getConstraints(φpart , x)
φ1 = φ1 ∧ φcons

φ2 = φ2 ∧ φcons

end for
end for
return φ1 ∧ ¬φ2

Figure 4.10. Algorithm to check an implication relationship.
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pre(φ) .= φI ∧ (φ ∨
∨

〈φG ,A〉∈C

φG ∧ (φI ∧ φ)[A])) (4.4)

An example of applying a transition precondition step to the integrator example is

shown in Figure 4.11. Beginning with the state shown in Figure 4.11b, applying the

transition precondition operation in a backwards fashion results in the state shown in

Figure 4.11a. In this example, Vout is between -200 and 2000 mV and the clock ct2 has

a value between 0 and 100. The only transition that could have fired in order to reach

this state is transition t3. Therefore, the value of the clock associated with t3 must have

been at 100. Additionally, upon firing t3, the value of the clock on t2 is assigned to zero.

p3

p2

t3

t2

[100, 100]

〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1

t0

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

〈V̇ out := [18, 22]〉
{Vin} [0, 0]

Vout ≤ 18ct2 + 200

Vout ≥ 22ct2 − 200

0 ≤ ct2 ≤ 100

−200 ≤ Vout ≤ 2000

p3

p2

t3

t2

[100, 100]

〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1

t0

{Vin} [0, 0]

〈V̇ out := [18, 22]〉

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

ct3 = 100

−200 ≤ Vout ≤ 200

(b)(a)

7−→
Transition

Figure 4.11. Application of weakest precondition operator to the integrator example.
(a) Result of applying weakest precondition. (b) Initial state.
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Therefore, the relationships between Vout and ct2 determine that Vout was previously

between -200 and 200 as shown in Figure 4.11a.

The algorithm for applying the weakest precondition is shown in Figure 4.12. This

algorithm calls pret for each guarded command applying the invariant as it goes, and

returns the disjunctive combination of applying each guarded command to φ. The

pret algorithm is shown in Figure 4.13. The first step in pret is to perform the

pre(φ, φI , C)
φresult = φ
for each (〈φG ,A〉 ∈ C)

φresult = φresult ∨ pret(φI ∧ φ, φG ,A)
end for
return φI ∧ φresult

Figure 4.12. Algorithm to perform transition precondition operation.

pret(φ, φG ,A)

// Perform Boolean assignments by cofactoring the variables.

for each ((b := true) ∈ A)

φ = φ.Cofactor(v)
end for
for each ((b := false) ∈ A)

φ = φ.Cofactor(¬v)
end for
// Perform [−∞,∞] assignments by abstracting all

// separation predicates that contain the variable.

for each ((v := [−∞,∞]) ∈ A)

for each BDD variable φv mapping to a separation predicate containing v
φ = φ.ExistAbstract(φv)

end for
// Perform remainder of assignments by substituting for new separation

// predicates where necessary.

for each BDD variable, φi ∈ φ mapping to c1x1 ≥ c2x2 + c3
if ((x1 := [a1, a1]) ∈ A ∧ (x2 := [a2, a2]) ∈ A)

φsub = x0 ≥ x0 + c3 − a1c1 + a2c2
φ = φ.Compose(φsub, φi)

else if ((x1 := [a1, a1]) ∈ A)

φsub = x0 ≥ c2xc + c3 − a1c1
φ = φ.Compose(φsub, φi)

else if ((x2 := [a2, a2]) ∈ A)

φsub = c1x1 ≥ x0 + c3 − a2c2
φ = φ.Compose(φsub, φi)

end if
end for
// Return conjunction guard condition and φ[A].
return φ ∧ φG

Figure 4.13. Transition precondition algorithm for a given guarded command.



74

Boolean variable assignments for the guarded command using the BDD cofactor op-

eration. Next, the [−∞,∞] assignments are performed by existentially abstracting all

inequalities containing the variable to which the assignment is being made. Finally, the

remaining real variable assignments are performed by finding the inequalities containing

the necessary real variable and replacing them with a newly created inequality in which

the assignment has been made using the BDD compose operation. Note that, this

method of performing real variable assignment assumes that a range of values is not

being assigned to the variable. This method is used to improve performance; however if

ranges of assignments are required, another approach whereby an inequality representing

the range of assignments is applied and transitivity constraints are generated could be

used. The final step is to apply the guarded command’s guard by taking the conjunction

of the guard and the result of performing the assignments.

4.3 Time Elapse

The time elapse operation (;) calculates all the states that can reach φ2 by allowing

time to elapse while remaining in φ1 in between. The general idea of time elapse is that

the state region φ2 is expanded to include all states that can reach φ2 by moving time

backward. The result is then intersected with all the states that can result in φ1 by

moving time backward up to the point where φ1 ∧ φ2 is no longer satisfied. Figure 4.14

presents a visual representation of the time elapse operation. Given an initial state region,

10x

10

y

φ2

φ1

φ1 ; φ2

Figure 4.14. Visual representation of φ1 ; φ2 where 1 ≤ ẋ ≤ 2 and 1 ≤ ẏ ≤ 2.
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φ2, the result of time elapse encompasses φ2 plus the region within the dotted lines where

φ1 is satisfied.

An example of applying a time elapse operation to the integrator example is shown

in Figure 4.15. Beginning with the state shown in Figure 4.15b applying the time elapse

operation in a backwards fashion results in the state shown in Figure 4.15a. In this

example,Vout has a value of 2000 and the clock on transition t2 has a value of 100. In

p3

p2

t3

t2

[100, 100]

〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1

t0

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

{Vin} [0, 0]

〈V̇ out := [18, 22]〉

ct2 = 100

Vout = 2000

p3

p2

t3

t2

[100, 100]

〈Vin := T 〉

〈Vin := F 〉
[100, 100]

p1

p0

t1

t0

〈V̇ out := [−22,−18]〉
{Vin} [0, 0]

〈V̇ out := [18, 22]〉
{Vin} [0, 0]

Vout ≤ 18ct2 + 200

Vout ≥ 22ct2 − 200

0 ≤ ct2 ≤ 100

−200 ≤ Vout ≤ 2000

(a) (b)

−→
Time Elapse

Figure 4.15. Application of time elapse operator to the integrator example. (a) Result
of apply time elapse. (b) Initial state.
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this state, the only action that can occur is time moving backwards. As time moves

backwards, the value of Vout can go as low as -200 and the value of the clock on

transition t2 can get down to zero. Since the clock value cannot go below zero, time

is restricted from moving backwards any further. During the time elapse calculation,

additional relationships between Vout and ct2 are formed since ct2 bounds the range of

values that Vout can have.

Figure 4.16 shows the top level algorithm for the time elapse calculation. Based on the

value of φ1 , it calls two different versions of the time elapse calculation. The first version

consists of the two functions timeElapsePhi1 and timeElapsePhi2. This version is the

basic time elapse calculation which works in all cases. However, in situations where φ1

is equivalent to false, an optimized version of time elapse can be used which has greater

performance.

4.3.1 Basic Time Elapse

The first step in performing the basic time elapse calculation is to construct a special

rate BDD, φr , which is the disjunction of each rate BDD in the possible rate set, R.

φr =
∨

〈φR,R〉∈R

φR (4.5)

Given the definition of φr, time elapse can be calculated as follows:

φ1 ; φ2
.= ∃δ{δ ≥ x0 ∧ ∃cδ{φr[ẋ := cδ/δ] ∧ φ2[x := x + cδ] ∧

∀ε{x0 ≤ ε ≤ δ ⇒ ∃cε{φr[ẋ := cε/ε] ∧ φ1[x := x + cε]}}}} (4.6)

This formulation of time elapse expands on the work of [50] to allow for nonunity rates

based on concepts in [8]. During time elapse, the real variables ε and δ are introduced to

evolve time, and cδ and cε variables are introduced for each real variable in combination

with φr to calculate the new range of values for each real variable as they evolve at their

timeElapse(φ1 , φ2 , φI ,R)

if (checkImplication(φ1, φI) == false)
return optimizedTimeElapse(φ2, R)

else
φresult = ¬timeElapsePhi1(φ1, R, φI)
return timeElapsePhi2(φ2, φresult, R)

end if

Figure 4.16. Algorithm for time elapse operation.
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varying rates. Additionally, a substitution is performed on φr using the corresponding δ

and cδ variables. For example, if φr contains a separation predicate of the form ẋ ≥ 2, it

is replaced with the new separation predicate cδx ≥ 2δ. Similarly, a separation predicate

x ≥ x0 + 2 in φ1 or φ2 is replaced with a new separation predicate x ≥ −cδx + 2. Once

these substitutions have been performed, transitivity constraints are inserted with respect

to the temporary variables resulting in new separation predicates where the values have

been evolved based on δ.

The time elapse formula includes sums of two real variables. This operation cannot

be performed using separation logic. Therefore, the δ, ε, cδ, and cε variables are replaced

with negations of themselves:

φ1 ; φ2
.= ∃δ̄{δ̄ ≤ x0 ∧ ∃c̄δ{φr[ẋ := c̄δ/δ̄] ∧ φ2[x := x− c̄δ] ∧

∀ε̄{δ̄ ≤ ε̄ ≤ x0 ⇒ ∃c̄ε{φr[ẋ := c̄ε/ε̄] ∧ φ1[x := x− c̄ε]}}}} (4.7)

By performing this substitution, rather than substituting for the actual variables, the zero

reference point x0 can be shifted backwards by substituting it for the cδ and ~cε variables:

φ1 ; φ2
.= ∃δ̄{δ̄ ≤ x0 ∧ ∃c̄δ{φr[ẋ := c̄δ/δ̄] ∧ φ2[x0 := c̄δ] ∧

∀ε̄{δ̄ ≤ ε̄ ≤ x0 ⇒ ∃c̄ε{φr[ẋ := c̄ε/ε̄] ∧ φ1[x0 := c̄ε]}}}} (4.8)

Finally, the universal quantification can be converted to an existential quantification:

φ1 ; φ2
.= ∃δ̄{δ̄ ≤ x0 ∧ ∃c̄δ{φr[ẋ := c̄δ/δ̄] ∧ φ2[x0 := c̄δ] ∧

¬∃ε̄{δ̄ ≤ ε̄ ≤ x0 ∧ ¬∃c̄ε{φr[ẋ := c̄ε/ε̄] ∧ φ1[x0 := c̄ε]}}}} (4.9)

The algorithms that implement Equation 4.9 are shown in Figure 4.17 and Figure 4.18.

In these algorithms, d variables are used in place of cδ and cε variables since only one set

of these variables exist at any one time. The algorithm shown in Figure 4.17 is responsible

for performing the ε portion of Equation 4.9 where the substitutions are performed for

each separation predicate, the rate BDD is applied, transitivity constraints are applied

for each of the temporary d variables and the temporary d variables are existentially

abstracted.

The algorithm shown in Figure 4.18 is responsible for performing the δ portion of

Equation 4.9. In this portion of the algorithm the substitutions are performed for each

separation predicate, the rate BDD in terms of δ is applied, transitivity constraints

are applied for each of the temporary d variables, and the temporary d variables are
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timeElapsePhi1(φ1, R, φI)
// All separation predicates containing x0 will be replaced with a new

// separation predicate with a d variable corresponding to the non x0

// variable in the separation predicate.

for each BDD variable φi ∈ φ1 mapping to c1x1 ≥ c2x2 + c3
if (x1 == x0)

φsub = d2 ≥ c2x2 + c3
dvars = dvars ∪ {d2}

else if (x2 == x0)

φsub = c1x1 ≥ d1 + c3
dvars = dvars ∪ {d1}

end if
φ1.Compose(φsub, φi)

end for
φresult = φ1 ∧ ratesInTermsOf(R, ε)
// Add transitivity constraints for all d variables

for each (d ∈ dvars)
φresult = addConstraints(φresult, d)

end for
// Abstract all separation predicates containing d variables.

φabstract = conjunction of all separation predicates in φresult containing a d variable

φresult = φresult.ExistAbstract(φabstract)

φresult = ¬φresult ∧ (x0 ≥ ε) ∧ (ε ≥ δ)
φresult = addConstraints(φresult, ε)
// Abstract all separation predicates containing ε
φabstract = conjunction of all separation predicates in φresult containing ε
φresult = φresult.ExistAbstract(φabstract)

φresult = ¬φresult ∧ (x0 ≥ δ) ∧ φI
return φresult

Figure 4.17. First portion of algorithm for performing nonoptimized time elapse.

existentially abstracted. In the final steps, an additional constraint asserting that δ ≤ x0

is inserted (keeping in mind that time is moving backwards), constraints over δ are added,

and separation predicates containing δ are existentially abstracted.

4.3.2 Optimized Time Elapse

The previously described approach to performing the time elapse calculation has

several disadvantages. In particular, due to the separation predicate substitution that

occurs, a large number of separation predicates are created and mapped to BDD variables

that are used for only a short period. Additionally, the constraint generation process is

a time consuming operation, especially in this case where addConstraints is called once

for each real variable. An optimized version of time elapse has been developed which can

be applied in situations where φ1 is true, i.e., when a safety property is being checked.

Applying the knowledge that φ1 is true to Equation 4.6, results in the following:
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timeElapsePhi2(φ2, φresult, R)

// All separatin predicates containing x0 will be replaced with a new

// separation predicate with a d variable corresponding to the non x0

// variable in the separation predicate.

for each BDD variable φi ∈ φ2 mapping to an c1x1 ≥ c2x2 + c3
if (x1 == x0)

φsub = d2 ≥ c2x2 + c3
dvars = dvars ∪ {d2}

else if (x2 == x0)

φsub = c1x1 ≥ d1 + c3
dvars = dvars ∪ {d1}

end if
φ2.Compose(φsub, φi)

end for
φresult = φ2 ∧ φresult ∧ ratesInTermsOf(R, δ) ∧ (x0 ≥ δ)
// Add transitivity constraints for all d variables

for each (d ∈ dvars)
φresult = addConstraints(φresult, d)

end for
// Abstract all separation predicates containing d variables.

φabstract = conjunction of all separation predicates in φresult containing d variables.

φresult = φresult.ExistAbstract(φabstract)

φresult = φresult ∧ (x0 ≥ δ)
φresult = addConstraints(φresult, δ)
// Abstract all separation predicates containing δ
φabstract = conjunction of all separation predicates in φresult containing δ
φresult = φresult.ExistAbstract(φabstract)

return φresult

Figure 4.18. Second portion of algorithm for performing nonoptimized time elapse.

φ1 ; φ2
.= ∃δ{δ ≥ x0 ∧ ∃cδ{φr[ẋ := cδ/δ] ∧ φ2[x := x + cδ]}} (4.10)

Given this simplified calculation of time elapse, Theorem 3.2 from [50] is adapted for use

with separation predicates that allow for nonunity rates to avoid the introduction of cδ

variables which would be immediately existentially abstracted from the representation.

Using this method, new inequalities are directly constructed based on the rates of the

continuous variables. This is performed by iterating over the possible rate sets, R, and

operating on each portion of the state space where φR is true as shown in Figure 4.19.

However, in order for time to elapse, none of the clocks must have reached a value of zero.

This is ensured using the canTimeElapse algorithm shown in Figure 4.20. A clock c is

determined to have a value of zero if the separation predicates x0 ≥ c+ 0 and c ≥ x0 + 0

exist simultaneously in the given product term, φ.

After ensuring that time can elapse, the separation predicates in that portion of the

state space are evolved backwards based on the rates for each continuous variable in R.

This is performed using the algorithm addNewIneqs shown in Figures 4.21. The algorithm
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optimizedTimeElapse(φ,R)

φresult = false
// Iterate over the possible rate sets.

for each (〈φR, R〉 ∈ R)

φpart = φ ∧ φR

for each product term φi ∈ φpart

if (canTimeElapse(φi))

φi = addNewIneqs(φi, R)
φi = abstractInconsistentIneqs(φi, R)

end if
φresult = φresult ∨ φi

end for
end for
return φresult

Figure 4.19. Algorithm for performing the optimized time elapse operation.

canTimeElapse(φ)
// If a clock has a zero value, time cannot move any further

// (Recall that exploration is performed in a backwards fashion.)

// Note that φ must be a product term.

for each term φ1 ∈ φ
if φ1 maps to (x0 ≥ c+ 0) where c ∈ C

for each term φ2 ∈ φ
if φ2 maps to (c ≥ x0 + 0) where c ∈ C

return false
end if

end for
end if

end for
return true

Figure 4.20. Algorithm for determining if time can elapse in a given BDD.

operates on a particular product term φ given a rate set R that is associated with that

product term. This algorithm does not create additional temporary real variables and

all the separation predicates containing those variables that the previously discussed

time elapse algorithm creates. Additionally, it attempts to insert only new separation

predicates that tighten the state space, remove separation predicates that are no longer

the tightest bound, and to remove separation predicates that are no longer consistent.

It does this by iterating over all pairs of separation predicates in φ that contain x0 and

creating new temporary separation predicates that account for the other real variable in

that separation predicate evolving at the specified rate. Note that a new BDD variable

is not actually mapped to these temporary separation predicates until it is determined

that they are necessary.
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addNewIneqs(φ, R)
// Find all pairs of separation predicates containing x0 and

// find tightening constraints for each combination of the inverted

// and noninverted forms of those separation predicates.

for each BDD variable φi ∈ φ mapping to c1x1 ≥ c2x2 + c3 where (x1 == x0 ∨ x2 == x0)

for each BDD variable φj ∈ φ mapping to c4x4 ≥ c5x5 + c6 where (x4 == x0 ∨ x5 == x0)

〈c′1, x′1, c′2, x′2, c′3〉 = trueForm(R, c1, x1, c2, x2, c3);
〈c′4, x′4, c′5, x′5, c′6〉 = trueForm(R, c4, x4, c5, x5, c6);
φ = φ ∧ transTT(c′1, x

′
1, c
′
2, x
′
2, c
′
3, c
′
4, x
′
4, c
′
5, x
′
5, c
′
6, φi , φj , φ)

〈c′1, x′1, c′2, x′2, c′3〉 = trueForm(R, c1, x1, c2, x2, c3);
〈c′4, x′4, c′5, x′5, c′6〉 = falseForm(R, c4, x4, c5, x5, c6);
φ = φ ∧ transFT(c′4, x

′
4, c
′
5, x
′
5, c
′
6, c
′
1, x
′
1, c
′
2, x
′
2, c
′
3, φj , φi , φ)

〈c′1, x′1, c′2, x′2, c′3〉 = falseForm(R, c1, x1, c2, x2, c3);
〈c′4, x′4, c′5, x′5, c′6〉 = trueForm(R, c4, x4, c5, x5, c6);
φ = φ ∧ transFT(c′1, x

′
1, c
′
2, x
′
2, c
′
3, c
′
4, x
′
4, c
′
5, x
′
5, c
′
6, φi , φj , φ)

〈c′1, x′1, c′2, x′2, c′3〉 = falseForm(R, c1, x1, c2, x2, c3);
〈c′4, x′4, c′5, x′5, c′6〉 = falseForm(R, c4, x4, c5, x5, c6);
φ = φ ∧ transFF(c′1, x

′
1, c
′
2, x
′
2, c
′
3, c
′
4, x
′
4, c
′
5, x
′
5, c
′
6, φi , φj , φ)

end for
end for
return φ

Figure 4.21. Algorithm for creating new separation predicates based on a given rate
set.

The algorithms in Figures 4.22 and 4.23 create temporary separation predicates based

on whether or not the original separation predicate is interpreted in its noninverted or

inverted form, respectively. Consider the general sequence of events in the original time

elapse calculation. First a separation predicate is replaced with a new separation predicate

accounting for an amount by which it changes. For example, the separation predicate

x1 ≥ x0 + c3 is replaced by x1 + d ≥ x0 + c3. In the next step, a separation predicate

relating the d variable to the amount of time that has elapsed, δ, is introduced. For

example, if x1 has a rate range of [rl, ru], the separation predicates ruδ ≥ d and d ≥ rlδ

are introduced. Next, transitivity constraints around the d variables are added resulting

in new separation predicates directly relating δ and x1. These intermediate steps are

skipped using the algorithms in Figures 4.22 and 4.23. Given the separation predicate

x1 ≥ x0+c3 and the fact that it is to be interpreted in its noninverted form, the temporary

separation predicates x1 ≥ ruδ + c3 is directly created. It is necessary to know if the

separation predicate is being evaluated in its inverted or noninverted form because this

impacts whether the lower or upper bound of the rate range is used in forming the new

separation predicate.

The next step is to form transitivity relationships among the temporarily created

separation predicates. Three main functions are used for this purpose: transTT, transFF,
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〈c1, x1, c2, x2, c3〉 trueForm(R, c1, x1, c2, x2, c3)
if (x2 == x0)

(ẋ1 := [rl, ru]) ∈ R
return 〈c1, x1, ru, δ, c3〉

else if (x1 == x0)

(ẋ2 := [rl, ru]) ∈ R
return 〈rl, δ, c2, x2, c3〉

end if

Figure 4.22. Evolve the true form of a separation predicate based on a given rate set.

〈c1, x1, c2, x2, c3〉 falseForm(R, c1, x1, c2, x2, c3)
if (x2 == x0)

(ẋ1 := [rl, ru]) ∈ R
return 〈c1, x1, rl, δ, c3〉

else if (x1 == x0)

(ẋ2 := [rl, ru]) ∈ R
return 〈ru, δ, c2, x2, c3〉

end if

Figure 4.23. Evolve the false form of a separation predicate based on a given rate set.

and transFT, as shown in Figures 4.24, 4.25, and 4.26. Respectively, these algorithms take

two noninverted separation predicate, two inverted separation predicates, and an inverted

separation predicate and a noninverted separation predicate and attempt to form transi-

tivity constraints between these separation predicates. The transitivity relationships are

formed based on Tables 4.2 and 4.3, which are discussed previously. As new transitivity

constraints are formed, they are checked to see if they provide additional information in

the current portion of the state space using the applyTransCons method.

The final step of the addNewIneqs algorithm is to determine if a new separation

predicate introduced by a transitivity constraint provides any additional information to

the state space. Additionally, removal of separation predicates that are no longer useful

would improve the performance of the analysis since the resulting BDD would be reduced

in size. This is where the applyTransCons algorithm as shown in Figure 4.27 comes

into play. This algorithm begins by first determining if the new separation predicate is

trivially true or false and handling those cases appropriately. In the next step of the

algorithm, the portion of φ where both separation predicates that form the transitivity

constraint (φ1 and φ2 ) are true is calculated. This portion of φ is referred to as φ12part .

Next, all the separation predicates in φ12part that either imply or are implied by the new

separation predicate φnew in either its inverted or noninverted form are found. These
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transTT(c1, x1, c2, x2, c3, c4, x4, c5, x5, c6, φ1 , φ2 , φ)
if (x2 == x4)

if (c2 > 0 ∧ c4 > 0)
φ = applyTransCons( c1

c2
, x1,

c5
c4
, x5,

c3
c2

+ c6
c4
, true, φ, φ1 , φ2)

else if (c2 < 0 ∧ c4 < 0)
φ = applyTransCons( c5

c4
, x5,

c1
c2
, x1,− c3

c2
− c6

c4
, true, φ, φ1 , φ2)

end if
else if (x1 == x4)

if (c1 > 0 ∧ c4 < 0)
φ = applyTransCons( c5

c4
, x5,

c2
c1
, x2,

c3
c1

+− c6
c4
, true, φ, φ1 , φ2)

end if
else if (x2 == x5)

if (c2 > 0 ∧ c5 < 0)
φ = applyTransCons( c1

c2
, x1,

c4
c5
, x4,

c3
c2

+− c6
c5
, true, φ, φ1 , φ2)

end if
end if
return φ

Figure 4.24. Calls applyTransCons on two noninverted separation predicates.

transFF(c1, x1, c2, x2, c3, c4, x4, c5, x5, c6, φ1 , φ2 , φ)
if (xj == xk)

if (cj > 0 ∧ ck > 0)
φ = applyTransCons( ci

cj
, xi,

cm
ck
, xm,

c1
cj

+ c2
ck
, false, φ, ¬φ1 ,¬φ2)

else if (cj < 0 ∧ ck < 0)
φ = applyTransCons( cm

ck
, xm,

ci
cj
, xi,− c1

cj
− c2

ck
, false, φ, ¬φ1 ,¬φ2)

end if
else if (xi == xk)

if (ci > 0 ∧ ck < 0)
φ = applyTransCons( cm

ck
, xm,

cj

ci
, xj ,− c1

ci
− c2

ck
, false, φ, ¬φ1 ,¬φ2)

end if
else if (xj == xm)

if (cj > 0 ∧ cm < 0)
φ = applyTransCons( ci

cj
, xi,

ck
cm
, xk,− c1

cj
− c2

cm
, false, φ, ¬φ1 ,¬φ2)

end if
end if
return φ

Figure 4.25. Calls applyTransCons on two inverted separation predicates.

separation predicates are used to determine if φnew is the most tightly bound separation

predicate or not. Specifically, the inverses of all separation predicates that imply φnew

are cofactored from φ12part , resulting in the portion of φ12part where the new separation

predicate is the most tightly bounding. Next φ12part is modified to remove the separation

predicates that φnew implies since those separation predicates are certainly not tightly

bounding. Finally, the temporary separation predicate is mapped to a BDD variable and

conjunctively combined with the remaining portion of the BDD.
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transFT(c1, x1, c2, x2, c3, c4, x4, c5, x5, c6, φ1 , φ2 , φ)
if (x1 == x4)

if (c1 > 0 ∧ c4 > 0)
φ = applyTransCons( c2

c1
, x2,

c5
c4
, x5,− c3

c1
+ c6

c4
, true, φ, ¬φ1 , φ2)

φ = applyTransCons( c5
c4
, x5,

c2
c1
, x2,

c3
c1
− c6

c4
, false, φ, ¬φ1 , φ2)

else if (c1 < 0 ∧ c4 < 0)
φ = applyTransCons( c2

c1
, x2,

c5
c4
, x5,− c3

c1
+ c6

c4
, false, φ, ¬φ1 , φ2)

φ = applyTransCons( c5
c4
, x5,

c2
c1
, x2,

c3
c1
− c6

c4
, true, φ, ¬φ1 , φ2)

end if
else if (x2 == x5)

if (c2 > 0 ∧ c5 > 0)
φ = applyTransCons( c4

c5
, x4,

c1
c2
, x1,− c3

c2
+ c6

c5
, true, φ, ¬φ1 , φ2)

φ = applyTransCons( c1
c2
, x1,

c4
c5
, x4,

c3
c2
− c6

c5
, false, φ, ¬φ1 , φ2)

else if (c2 < 0 ∧ c5 < 0)
φ = applyTransCons( c4

c5
, x4,

c1
c2
, x1,− c3

c2
+ c6

c5
, false, φ, ¬φ1 , φ2)

φ = applyTransCons( c1
c2
, x1,

c4
c5
, x4,

c3
c2
− c6

c5
, true, φ, ¬φ1 , φ2)

end if
else if (x2 == x4)

if (c2 > 0 ∧ c4 < 0)
φ = applyTransCons( c5

c4
, x5,

c1
c2
, x1,− c3

c2
− c6

c4
, true, φ, ¬φ1 , φ2)

φ = applyTransCons( c1
c2
, x1,

c5
c4
, x5,

c3
c2

+ c6
c4
, false, φ, ¬φ1 , φ2)

else if (c2 < 0 ∧ c4 > 0)
φ = applyTransCons( c5

c4
, x5,

c1
c2
, x1,− c3

c2
− c6

c4
, false, φ, ¬φ1 , φ2)

φ = applyTransCons( c1
c2
, x1,

c5
c4
, x5,

c3
c2

+ c6
c4
, true, φ, ¬φ1 , φ2)

end if
else if (x1 == x5)

if (c1 > 0 ∧ c5 < 0)
φ = applyTransCons( c2

c1
, x2,

c4
c5
, x4,− c3

c1
− c6

c5
, true, φ, ¬φ1 , φ2)

φ = applyTransCons( c4
c5
, x4,

c2
c1
, x2,

c3
c1

+ c6
c5
, false, φ, ¬φ1 , φ2)

else if (c1 < 0 ∧ c5 > 0)
φ = applyTransCons( c2

c1
, x2,

c4
c5
, x4,− c3

c1
− c6

c5
, false, φ, ¬φ1 , φ2)

φ = applyTransCons( c4
c5
, x4,

c2
c1
, x2,

c3
c1

+ c6
c5
, true, φ, ¬φ1 , φ2)

end if
end if
return φ

Figure 4.26. Calls applyTransCons on normal and inverted separation predicates.
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applyTransCons(c1, x1, c2, x2, c3, tense, φ, φ1, φ2)

if c1x1 ≥ c2x2 + c3 is vacuously true
if (tense == true)

return φ
else

return φ ∧ ¬(φ1 ∧ φ2 )
end if

end if
if c1x1 ≥ c2x2 + c3 is vacuously false

if (tense == true)
return φ ∧ ¬(φ1 ∧ φ2 )

else
return φ

end if
end if
// Portion of φ where both φ1 and φ2 are true

φ12part = φ1 ∧ φ2 ∧ φ
if (φ12part == false)

return φ
end if
// Find all separation predicates in φ12part that either

// imply or are implied by φnew.

φnew maps to separatin predicate c1x1 ≥ c2x2 + c3
for each BDD variable φi ∈ φ12part mapping to a separation predicate

if (tense == true)
if (timpliest(φnew, φi))

new implies.insert(φi)

else if (timpliesf(φnew, φi))

new implies.insert(¬φi)

end if
if (timpliest(φi, φnew))

implies new.insert(φi)

else if (timpliesf(φi, φnew))

implies new.insert(¬φi)

end if
else

if (fimpliest(φnew, φi))

new implies.insert(φi)

else if (fimpliesf(φnew, φi))

new implies.insert(¬φi)

end if
if (timpliesf(φi, φnew))

implies new.insert(φi)

else if (fimpliesf(φi, φnew))

implies new.insert(¬φi)

end if
end if

end for

Figure 4.27. Algorithm for applying a more tightly bounding transitivity constraint.
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// Portion of φ12part where φnew will be the tightest bound.

φtight = φ12part

for each φi ∈ implies new

φtight = φtight.Cofactor(¬φi)

end for
// If φnew will never be the tightest bound, do nothing.

// Otherwise, remove all separation predicates from φ12part that are

// less tight than φnew. This also remove inconsistent constraints.

if (φtight != false)
φ = φ - φ12part

for each φi ∈ new implies

φ12part = φ12part.Cofactor(φi)

end for
if (tense == true)

φ12part = φ12part ∧ φnew

else
φ12part = φ12part ∧ ¬φnew

end if
φ = φ ∨ φ12part

end if
return φ

Figure 4.27 continued.
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current portion of the state representation.

The situation becomes slightly more complicated when the separation predicate does

not contain x0. A separation predicate of the form c1x1 ≥ c2x2 + c3, can be eliminated

if when considering the ranges of rates, the left side of the inequality decreases more

rapidly than the right side of the inequality in the worse case scenario. To demonstrate

this, let’s examine the separation predicate as time moves forward. If x1 is changing with

the range of rates [rl1, ru1] and x2 is changing with the range of rates [rl2, ru2], and time

is incremented by δ time steps, the evolved separation predicate would be of the form

c1(x1+[rl1, ru1]δ) ≥ c2(x2+[rl2, ru2]δ)+c3. Manipulating this separation predicate results

in c1x1 ≥ c2x2 + c3 + (−c1[rl1, ru1]δ + c2[rl2, ru2]δ). It can be seen that in order for the

separation predicate to remain satisfied, the portion in parentheses must remain less than

or equal to zero, i.e., 0 ≥ −c1[rl1, ru1]δ + c2[rl2, ru2]δ or c1[rl1, ru1] ≥ c2[rl2, ru2]. Since c1

and c2 can be either positive or negative, min and max determine which rate value to

select for the worst case scenario. Therefore, in order for the true form of a separation

predicate to remain consistent, it must hold that min(c1[rl1, ru1]) ≥ max (c2[rl2, ru2]).

Similarly, in order for the false form of a separation predicate to remain consistent, it must

hold that max (c1[rl1, ru1]) ≤ min(c2[rl2, ru2]). The algorithm in Figure 4.28 accounts for

the fact that time is in fact moving in reverse during analysis.

The final step of the abstractInconsistentIneqs algorithm is to remove the non-

inverted or inverted form of the separation predicate mapping to the BDD variable φi .

Since it is only necessary to remove the noninverted or inverted form of the separation

predicate, but not the entire BDD variable, a special calculation using the BDD cofactor

operation is performed.

The final result of the optimized time elapse is the disjunction of each BDD corre-

sponding to a given rate set where new inequalities have been generated and inconsistent

inequalities have been removed. This results in an overall BDD that accounts for all the

possible time evolutions that could have occurred.

4.4 Clock Specification

Clock specification is used to specify properties in terms of time. Therefore, it is

necessary to assign zero to specially created clock values during the analysis using the

specifyClock method shown in Figure 4.29. This method performs a simple assign-

ment to a real variable by finding all separation predicates containing that real variable
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abstractInconsistentIneqs(φ, R)
for each BDD variable φi ∈ φ mapping to c1x1 ≥ c2x2 + c3

abstractTrue = false
abstractFalse = false
// Cases where separation predicate contains x0

if (x1 == x0 ∧ (ẋ2 := [rl, ru]) ∈ R ∧ rl > 0)
abstractFalse = true

else if (x2 == x0 ∧ (ẋ1 := [rl, ru]) ∈ R ∧ rl > 0)
abstractTrue = true;

end if
if (x2 == x0 ∧ (ẋ1 := [rl, ru]) ∈ R ∧ ru < 0)

abstractFalse = true
else if (x1 == x0 ∧ (ẋ2 := [rl, ru]) ∈ R ∧ ru < 0)

abstractTrue = true;
end if
// Cases where separation predicate does not contain x0

(ẋ1 := [rl1, ru1]) ∈ R
(ẋ2 := [rl2, ru2]) ∈ R
if (c1 > 0 ∧ c2 > 0)

if (c1rl1 > c2ru2)

abstractTrue = true
end if
if (c2rl2 > c1ru1)

abstractFalse = true
end if

else if (c1 < 0 ∧ c2 > 0)
if (c1ru1 > c2ru2)

abstractTrue = true
end if
if (c2rl2 > c1rl1)

abstractFalse = true
end if

else if (c1 > 0 ∧ c2 < 0)
if (c1rl1 > c2rl2)

abstractTrue = true
end if
if (c2ru2 > c1ru1)

abstractFalse = true
end if

// Both c1 and c2 cannot be negative by rules of canonicity.

end if
if (abstractTrue)

φ = φ.Cofactor(φi) ∨ (¬φi ∧ ¬(φ.Cofactor(φi)) ∧ φ.Cofactor(¬φi))
end if
if (abstractFalse)

φ = φ.Cofactor(¬φi) ∨ (φi ∧ ¬(φ.Cofactor(¬φi)) ∧ φ.Cofactor(φi))
end if
return φ

end for

Figure 4.28. Algorithm for removing separation predicates that are inconsistent.
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specifyClock(z, φ)
for each BDD variable φi ∈ φ that maps to a separation predicate containing z

φi maps to the separation predicate c1x1 ≥ c2x2 + c3
if (x1 == z)

φsub = x0 ≥ c2x2 + c3
else if (x2 == z)

φsub = c1x1 ≥ x0 + c3
end if
φ.Compose(φsub, φi)

end for
return φ

Figure 4.29. Algorithm for assigning the value zero to a clock.

and substituting them with new separation predicates where the real variable has been

replaced with x0.

4.5 Generating Error Traces

In situations where it has been determined that the system violates the property, it is

very beneficial to provide an error trace showing how the error state is reached. However,

error trace generation is complicated by the backwards and depth-first exploration prop-

erties of the model checker. An algorithm for generating traces is shown in Figure 4.30.

This algorithm assumes that the Tµ property contained only a single fixpoint and that

the result of each fixpoint iteration is stored in a stack represented by the variable X.

Note that the result of each fixpoint iteration is an HSL formula. This algorithm operates

by first finding the product term in the result of the fixpoint’s final iteration that implied

the initial state. The algorithm then works forwards from this portion of the initial state

to determine how the violating portion of the state space is reached. At each step, the

transition precondition and time elapse calculations are applied to each product term

of the top element of the fixpoint stack X resulting in φnext . If the current portion of

the state implies φnext , then φnext is reachable from the current state. This algorithm

incurs significant overhead due to the requirement of storing the result of each fixpoint

iteration. Additionally, applying pre and timeElapse to individual product terms can

be very expensive since large numbers of product terms can potentially exist.

4.6 Summary

This chapter introduced a BDD based model checking algorithm for LHPNs, a key

contribution of this dissertation. This algorithm is Boolean in nature while supporting
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printErrorTrace(X,φinit , φI , C,R)

// X is a stack containing the result of each fixpoint iteration.

// First find a product term in the last iteration of the fixpoint

// that is implied by the initial state.

for each product term φpterm ∈ X.top()
if (checkImplication(φinit ,¬φpterm))

φcur = φpterm

print φcur

break
end if

end for
X.pop()
// For each remaining element in the stack, apply pre

// and timeElapse and determine if the result is implied

/ by φcur

while (¬X.empty())
for each product term φpterm ∈ X.top()

φnext = timeElapse(φI , pret(φpterm , φI , C), φI ,R)
if (checkImplication(φcur ,¬φnext))

φcur = φpterm

print φcur

X.pop()
break

end if
end for

end while

Figure 4.30. Algorithm for generating error trace.

continuous variables that can change within a range of rates. For improved performance,

an optimized time elapse calculation is described. This calculation allows for analysis of

systems that would normally not be possible due to the large size of the BDDs that result.

In addition to this optimization, care has been taken to apply transitivity constraints in

a manner as to not impact performance too dramatically. However, this results in a

conservative rather than exact analysis and thus the possibility of false negatives.



CHAPTER 5

SMT BASED BOUNDED MODEL

CHECKER

The Satisfiability Modulo Theories (SMT) problem is a generalization of the Boolean

Satisfiability (SAT) problem where Boolean variables are replaced by predicates from

various background theories [60]. These theories may include linear real and integer

arithmetic, uninterpreted functions, and the theories of various data structures such as

lists, arrays, and bit vectors [11, 12, 18, 21, 37, 39, 42].

Initial SMT solver implementations functioned by translating SMT instances into

Boolean SAT instances and passing those SAT instances to a Boolean SAT solver. For

example, to support integer arithmetic, multiple Boolean variables are used as a bit

representation for integers and the necessary integer theories are specified as Boolean

operations on those individual bit variables. This can result in extremely large Boolean

SAT instances; however, existing SAT solvers can be used directly without modification.

Therefore, as Boolean SAT state of the art increases, the improvements immediately

benefit the SMT solvers. This approach can also be severely restricting. The loss of higher

level knowledge of the underlying theories requires the Boolean SAT solver to work much

harder to discover simple concepts. This problem is manifested by the large Boolean SAT

instances that result. Therefore, more recent SMT solvers [20, 42, 59] closely integrate

theory-specific solvers with a DPLL (Davis-Putnam-Logemann-Loveland) approach to

Boolean satisfiability [60]. These types of SMT solvers are often referred to as DPLL(T)

[42]. In this type of architecture, the DPLL-based SAT solver passes conjunctions of

predicates belonging to theory T to a specialized solver. The specialized solver is then

responsible for deciding feasibility of those predicates. Additionally, the particular theory

solver must be able to explain the reasons for infeasibility, if necessary.

In 2005 and 2006 the SMT-COMP competition [16, 17] was held which has helped

to drive improvements in SMT solvers. In 2006, 12 SMT solvers competed in one or

more of 11 divisions. The success of this competition can be largely attributed to SMT-
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LIB [62, 63] which provides a standardized specification for SMT problems and a large

library of benchmarks. Participants included Barcelogic [42, 59], MathSAT [20], and

Yices [38]. In 2006, Barcelogic was second place in the divisions in which it competed.

The Barcelogic solver supports difference logic over integers, equality with uninterpreted

functions among others. The MathSAT solver currently supports theories of equality,

uninterpreted functions, separation logic, and linear arithmetic over reals and integers.

Yices, the stand-out winner of the 2006 competition, includes an incremental Simplex

algorithm for the theory of linear arithmetic that is tightly integrated within the DPLL

framework. Yices strong ability to work with the theory of linear arithmetic made it

particularly well suited for hybrid system model checking. For these reasons, Yices was

selected as the SMT solver that the LHPN model checker described in this section is

based upon.

The basic algorithm for performing SMT based bounded model checking of LHPNs

is shown in Figure 5.1. The algorithm proceeds by creating an SMT instance in which

statements are asserted. The initial state is first asserted, followed by the invariant for

each iteration. Each iteration’s next states are calculated by firing transitions or elapsing

time. This is performed by asserting a disjunction of the guarded commands and a time

elapse formula. Finally, a failure condition is asserted in terms of state variables from

each iteration. After asserting each of these components, the SMT satisfiability check

is performed. Satisfiability indicates that the property is violated because there is an

assignment indicating that the failure condition is reachable. Unsatisfiability indicates

that the property could not be violated in that number of iterations. This does not

necessarily indicate that the property cannot be violated; however, so this is a bounded

model checker. The remainder of this chapter describes the SMT based bounded model

checking algorithm in greater detail.

5.1 State Variables and Initial State

To proceed with SMT based bounded model checking, it is first necessary to create a

set of state variables for each iteration of the exploration. The state variables for each

iteration, i, are defined using the tuple 〈M i, Si, Qi, Ci, Ai, BRi〉. In other words, for

each iteration, Boolean marking variables, Boolean signal variables, real variables, clock

variables, Boolean clock active variables, and Boolean rate variables are created.

Throughout the SMT model checking procedure, the BDDs that are constructed
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smtCheck(φinit , φI , C,R, maxIterations)

SMTInstance ins;

iteration = 0

// Assert initial state

ins.assert(mkExprForBDD(φinit), 0)

while (iteration < maxIterations)

// Assert invariant for current iteration

ins.assert(mkExprForBDD(φI, iteration))

trans = true
for each 〈φG ,A〉 ∈ C

trans = trans ∨ mkExprForGC(φG, A, iteration)

end for
trans = trans ∨ mkExprForTimeElapse(R, iteration)

ins.assert(trans)

iteration++

end while
ins.assert(mkExprForFailProp(maxIterations))

if (ins.check == true)
return ‘‘Property Violated’’

else
return ‘‘Property Not Violated’’

end if

Figure 5.1. Basic algorithm for performing SMT based model checking of LHPNs.

during symbolic model generation are used as the foundation from which the SMT

based analysis is performed. This is necessary because basic Boolean operations are

necessary in order to build the symbolic model. For example, during the invariant

construction a Boolean based exploration of the LHPN is performed. Additionally, when

the guarded commands are generated, Boolean operations must be used to merge primary

and secondary guarded commands. BDDs provide a convenient and efficient mechanism

for performing these operations. The pseudo-code for the algorithm that constructs SMT

statements from arbitrary BDDs is shown in Figure 5.2. The algorithm first iterates

over each product term in the BDD and then iterates over each term within the product

term. Variables corresponding to Boolean variables in the symbolic model are directly

mapped to the specified iteration’s state variables. BDD variables that map to inequalities

are converted to inequality expressions over the specified iteration’s real variables. The

exact procedure by which SMT statements are constructed depends on the particular

SMT solver. Yices provides a convenient API for constructing SMT expressions using

conjunction and disjunction operations.

After constructing each iteration’s state variables, the first step in SMT model check-

ing is to assert the initial state (φinit) in terms of the initial iteration’s variables (i.e.,

i = 0). The SMT assertation statement for the initial state is built directly from the BDD
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mkExprForBDD(φ, iteration)

i = iteration

if (φ == true)
return mkTrueExpr()

else if φ == false
return mkFalseExpr()

else
result = false
for product term φi ∈ φ

product = true
for term t ∈ φi

if t maps to (c1x1 ≥ c2x2 + c3) and is true literal

result = result ∧ (c1x1 ≥ c2x2 + c3)
else if t maps to (c1x1 ≥ c2x2 + c3) and is false literal

result = result ∧ (c1x1 ≥ c2x2 + c3)
else if t maps to a Boolean and is true literal

product = product ∧ ti
else if t maps to a Boolean and is false literal

product = product ∧ ti
end if

end for
result = result ∨ product

end for
end if
return result

Figure 5.2. Algorithm for constructing SMT statements for BDDs.

representation of the initial state. For example, the following initial state is asserted in

the SMT solver for the switched capacitor integrator in Figure 2.17:
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5.2 Invariant

At each iteration of the analysis, it is necessary to assert the invariant in terms of

that iteration’s set of state variables. This is constructed from the BDD representation

of the invariant using the method discussed previously. The invariant for the integrator

in Figure 2.17 is asserted in the SMT solver as follows for each iteration i:
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5.3 Time Elapse

The time elapse portion of the next state assertion makes use of the possible rate set

(R) to calculate the values of real variables as a result of time moving forward. This

algorithm is shown in Figure 5.3. In calculating the next state via time elapse, a new

real variable is created representing the amount of time that has elapsed. This variable

is referred to as δi,j , and it represents the amount of time that has elapsed between

iterations i and j. Since time is moving forward, δi,j is always greater than or equal to

zero. Based on the current values of the Boolean rate variables, the real variables change

by some multiple of δi,j . Additionally, all clock variables increase by exactly δi,j . Lastly,

all Boolean variables in the next state have the same value as in the current state.

The complete time elapse assertion for the integrator in Figure 2.17, given the current

state i and the next state j, is as follows:
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i
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5.4 Transition Relations

The transition relation portion of the next state assertion makes use of the merged

guarded command set (C) to calculate the values of the next state variables based on
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mkExprForTimeElapse(R, iteration)

i = iteration;

j = iteration + 1;

result = δi,j ≥ 0
// Increment real variables based on R
rates = false
for (〈φR, R〉 ∈ R)

rate = mkExprForBDD(φR, i)
for ((v̇ := [rl, ru]) ∈ R)

rate = rate ∧ (vj ≥ vi + rlδ
i,j)

rate = rate ∧ (vj ≤ vi + ruδ
i,j)

end for
rates = rates ∨ rate

end for
// All clocks increment by δ
for (c ∈ C)

result = result ∧ (cj = ci + δi,j)
end for
// Next state Boolean variables get same value as current state

for (b ∈ {M ∪ S ∪A ∪BR})
result = result ∧ (bj = bi)

end for
result = result ∧ rates

return result

Figure 5.3. Generating an SMT statement representing the time elapse calculation.

the values of the current state variables. The algorithm for constructing the assertion

statement for a given guarded command is shown in Figure 5.4. Essentially, the guard

portion (φG) of the guarded command is asserted in terms of the current state while the

assignment portion of the guarded command makes use of both the current and the next

state variables. Assignments that are specified in the assignment set (A) are performed

on the next state variables while variables that have no assignment performed on them are

simply assigned the same value as in the current state. There is one exception, however.

If a clock is assigned the range [−∞,∞], no assignment is made to that clock variable.

This has the effect of allowing the clock to remain undefined in the next state.

In the integrator example, the corresponding SMT assertion statement for the merged

guarded command C(t2, t0), given the current state i and the next state j, is as follows:
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mkExprForGC(φG, A, iteration)

i = iteration;

j = iteration + 1;

// Clock does not change at all when guarded command is applied

result = (δi,j = 0)
// Guard in terms of current state

result = result ∧ mkExprForBDD(φG)
// Perform assignments on Boolean variables. If no assignment is made,

// next value is same as current value.

for (b ∈ {M ∪ S ∪A ∪BR})
if ((b := true) ∈ A)

result = result ∧ (bj = true)
else if ((b := false) ∈ A)

result = result ∧ (bj = false)
else

result = result ∧ (bj = bi)
end if

end for
// Perform assignments on real variables. If no assignment is made,

// next value is same as current value. If assignment is to

// [−∞,∞], next value is left undefined.

for (v ∈ {C ∪Q})
if ((v := [−∞,∞]) ∈ A)

// Do Nothing.

else if ((v := [al, au]) ∈ A)

result = result ∧ (vj ≥ al)
result = result ∧ (vj ≤ au)

else
result = result ∧ (vj = vi)

end if
end for
return result

Figure 5.4. Generating an SMT statement for a given guarded command.
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Vinj = Vini ∧ fail j = fail i

Note that in this example, the variable cjt2 is not assigned any value. This is because the

assignment set dictates that it is assigned the value [−∞,∞]. By not performing any

assignment on cjt2 , it can have any value.

An assertion for the next state calculation is made based on the disjunction of each

guarded command and the time elapse assertion. This allows for a choice to be made

about what happens to get to the next state to reach a failure condition, if possible.
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5.5 Specifying Properties

The final step of the model checking procedure is to assert the property and apply

the SMT checking procedure. If a satisfiable solution is found, this indicates that it is

possible to reach the violating condition. Otherwise, the property is found not to be

violated within that number of iterations. This, however, does not necessarily mean that

the property can never be violated. The current SMT based model checker only supports

the verification of safety properties, i.e., those properties that are specified in TCTL using

only the AG operator. In the case of LHPNs that are generated from VHDL-AMS code,

the property AG(¬fail) is equivalent to stating that the failure condition occurs if the

signal fail is asserted. Therefore, in these cases, it is sufficient to construct a disjunction

of the fail signal over all iterations as shown in Figure 5.5.

In the case of the integrator example in Figure 2.17 it is suitable to assert the

disjunction of Boolean signal fail at each iteration as follows (for a maximum iteration

count of five):

fail0 ∨ fail1 ∨ fail2 ∨ fail3 ∨ fail4

In the event that the property is violated, the SMT solver generates a satisfying

solution to the current context. This satisfying solution directly corresponds to a trace

over all iteration’s state variables beginning from an initial state that led to the error

condition. In order to make the error trace more useful to designers, only the elements

of the state that change at each step of the trace are displayed.

This model checker heavily relies on the SMT solver to find satisfying solutions to

sets of inequalities over real variables. Therefore, the exactness of the model checking

algorithm is directly dependent on the exactness of the SMT solver being used. From a

theoretical standpoint, however, this model checking algorithm is exact and should not

result in false negatives or false positives, aside from false positives that may arise as a

result of not model checking over enough iterations.

mkExprForFailProp(φ, maxIterations)

result = false
for (i ∈ {0..maxIterations})

result = result ∨ faili

end for
return result;

Figure 5.5. Generating an SMT statement representing the property under verification.



CHAPTER 6

RESULTS

The VHDL-AMS to LHPN compiler, the LHPN to symbolic model generator, the

BDD based model checking algorithm (ATACS-BDD), and the SMT based bounded

model checking algorithm (ATACS-SMT) described in this dissertation have been im-

plemented and results are promising. This chapter describes examples that are used to

test and analyze the performance of these verification methods. Performance results are

also provided. The water level monitor example from the hybrid system domain models

a basic system containing only a few discrete and continuous variables. Additionally,

an example has been developed based on a basic analog circuit. Specifically, a switched

capacitor integrator circuit has been modeled and analyzed. Each example can be made

to satisfy or violate the specified property by modifying the model’s parameters. All

results in this chapter were collected on a 2 Ghz Intel Core Duo with 2 GB of main

memory.

6.1 Water Level Monitor

The VHDL-AMS code shown in Figure 6.1 models a water level monitor for a tank.

This is a standard hybrid system example from [4]. The water level monitor continuously

senses the water level in a tank to ensure that it never empties and never goes above 13

inches. When the pump is not active, the water level decreases at 2 inches per second.

When the pump is active, the water level increases at 1 inch per second. It takes 1 to 2

seconds for the pump to activate or deactivate when signaled. In this example, the real

variable y, represents the current level of the water, and the variable inc indicates if the

water is presently increasing or, in other words, if the pump is currently active. When

the water level reaches 10 inches, the pump is deactivated 1 to 2 seconds later and the

water level begins to decrease. One to 2 seconds after the water level reaches 5 inches,

the pump is activated causing the water level to rise once again. The verification goal

for this example is to ensure that the water level never becomes fully empty and never
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library IEEE;

use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity water level is
end water level;

architecture monitor of water level is
quantity y:real; -- water level

signal inc:std logic := ’1’; -- is water level going up or down?

begin
break y => 2.0; --Initial value

if inc=’1’ use
y’dot == 1.0;

elsif inc = ’0’ use
y’dot == -2.0;

end use;
process begin

wait until y’above(10.0);

assign(inc,’0’,1,2);

wait until not y’above(5.0);

assign(inc,’1’,1,2);

end process;
assert (y’above(0.0) and not y’above(13.0))

report ‘‘Overfill/underfill of the tank.’’

severity failure;

end monitor;

Figure 6.1. VHDL-AMS for a water level monitor.

rises above 13 inches. The model can be modified to cause failure by increasing the lower

bound above zero inches and/or decreasing the upper bound below 13 inches.

The LHPN model of the water level monitor shown in Figure 6.2 is automatically

generated from the VHDL-AMS in Figure 6.1. Initially, the water level is 2 inches and

increasing at a rate of 1 inch per second. The LHPN in Figure 6.2a controls the rate of

change of y based on the current value of inc. The LHPN in Figure 6.2b causes the value

of inc to change based on the current water level. The final LHPN in Figure 6.2c assigns

the variable fail to true if the property becomes violated.

Table 6.1 shows the result of applying ATACS-BDD and ATACS-SMT to the water

example. For comparison, the results of applying ATACS-DBM are also provided. The

upper half of the table shows the results of applying the three different model checkers to

the water level monitor shown in Figure 6.2 with varying assertion ranges for the water

level. Since ATACS-SMT can only provide a nonviolating result for a given bound on

the number of iterations, timing results for upper bounds of 10, 20, 30, and 40 iterations

are shown. For ATACS-BDD, the number of fixpoint iterations required to verify the
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Q0 = {y = 2} R0 = {ẏ = [1, 1]} S0 = {inc,¬fail , ẏ[1,1],¬ẏ[−2,−2]}

p1

p2

{¬fail ∧ y ≤ 5}
[1, 2]〈inc := T 〉 [1, 2]〈inc := F 〉

{¬fail ∧ y ≥ 10}
t3 t2

(b)

p3

[0, 0]〈fail := T 〉
{¬fail ∧ (y ≤ 0 ∨ y ≥ 13)}

t4

(c)

p0

t1

t0

〈ẏ := [1, 1], ẏ[−2,−2] := F, ẏ[1,1] := T 〉
{¬fail ∧ inc ∧ ẏ[1,1]} [0, 0]

〈ẏ := [−2,−2], ẏ[−2,−2] := T, ẏ[1,1] := F 〉
{¬fail ∧ ¬inc ∧ ẏ[−2,−2]} [0, 0]

(a)

Figure 6.2. LHPN model of a water level monitor.

Table 6.1. Water level monitor verification results.

Assertion Exp. ATACS-BDD ATACS-SMT ATACS-DBM
Range Result Time (s) Iter. Time (s) Iter. Time (s) Zones

1x

0 ≤ y ≤ 13 Pass < 1 5 < 1 10 < 2* 10*
0 ≤ y ≤ 13 Pass – – 5 20 – –
0 ≤ y ≤ 13 Pass – – 29 30 – –
0 ≤ y ≤ 13 Pass – – 119 40 – –
0 ≤ y ≤ 12 Fail < 1 4 < 1 10 < 1 6
1 ≤ y ≤ 13 Fail < 1 7 < 2 15 < 1 10
1 ≤ y ≤ 12 Fail < 1 4 < 1 10 < 1 6

2x

1 ≤ y ≤ 25 Pass < 1 5 < 1 10 < 2 9
1 ≤ y ≤ 25 Pass – – 3 20 – –
1 ≤ y ≤ 25 Pass – – 26 30 – –
1 ≤ y ≤ 25 Pass – – 104 40 – –
1 ≤ y ≤ 24 Fail < 1 4 < 1 10 < 1 6
2 ≤ y ≤ 25 Fail < 1 7 < 2 15 < 1 10
2 ≤ y ≤ 24 Fail < 1 4 < 1 10 < 1 6

* Verification result does not match expected result.
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property is shown. Note that in the case of ATACS-DBM, the property is incorrectly

found to be violated for an assertion range of 0 ≤ y ≤ 13. This is due to the DBM model

checker’s sensitivity to round off error since it uses integer approximation to represent

the state space. In order to avoid this issue, the model can be multipled by a factor of

two. This results in a model where y begins to increase two to four time units after y

reaches ten, and y begins to decrease two to four times units after y reaches 20. Results

of applying verification to the multiplied model are shown in the second half of Table 6.1.

The assertions ranges also have to be multiplied by a factor of two. All model checkers,

including ATACS-DBM, now get the proper result on all test cases.

6.2 Switched Capacitor Integrator

The next example for which results are provided is the switched capacitor integrator

circuit which has been used as an example throughout this dissertation. The circuit,

shown in Figure 2.1, takes as input a 5 kHz square wave that varies from −1000 mV to

1000 mV and generates a triangle wave as output representing the integral of the input

voltage. The verification goal is to ensure that Vout never saturates (i.e., it is always

between −2000 mV and 2000 mV ). By varying the ranges of rate for Vout , the circuit

can be made to violate or satisfy this property as shown in Table 6.2. In particular,

when the lower and upper bound for these rates are equal, both the ATACS-BDD and

ATACS-SMT model checkers determine in a few seconds of CPU time that the property

is satisfied (i.e., the circuit does not saturate). When the lower and upper bounds are

not equal, both ATACS-BDD and ATACS-SMT determine correctly in a few seconds

that the circuit violates the property. This error occurs if the rising slew rate of Vout is

consistently larger than the falling slew rate leading to a build up of charge eventually

Table 6.2. Switched capacitor integrator verification results.

Rate Exp. ATACS-BDD ATACS-SMT ATACS-DBM
Ranges Result Time (s) Iter. Time (s) Iter. Time (s) Zones
[20, 20] Pass < 1 7 < 1 10 < 1 4
[20, 20] Pass – – 7 20 – –
[20, 20] Pass – – 505 30 – –
[18, 22] Fail < 2 11 < 2 15 N/A N/A

[18, 22] (Piecewise) Fail < 1 6 60 20 < 1 9
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saturating the high supply rail. Once again, since ATACS-SMT can only demonstrate

that the property is not violated for a specified number of iterations, results are provided

where 10, 20, 30, and 40 iterations are allowed. Also, note that ATACS-DBM cannot

directly support ranges of rates. Therefore, a piecewise approximate model must first be

generated in which the rate of Vout initially increases at 18 mV/µs. After some random

amount of time, the rate may switch to 22 mV/µs. Similar behavior is modeled when

Vout is decreasing.

6.3 Corrected Switched Capacitor Integrator

Saturation of the switched capacitor integrator can be prevented using the circuit

shown in Figure 6.3. The corresponding VHDL-AMS model of this circuit and LHPN

model is shown in Figures 6.4 and 6.5, respectively. In this circuit, a resistor in the

form of a switched capacitor is inserted in parallel with the feedback capacitor. This

causes Vout to drift back to 0 V. In other words, if Vout is increasing, it increases faster

when it is far below 0 V than when it is near or above 0 V. Therefore, the model for this

circuit uses a Vout range of 28 to 37 mV/µs when it is below −1000 mV, a range of 18 to

Q4

Φ1

Q1

Vin

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2

C1

Q2 Vout

C2

C2 = 25 pF

C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.5 pF

dVout/dt = (±(18 to 22)− Vout/100) mV/µs

freq(Φ1) = freq(Φ2) = 500 kHz

−

+

Figure 6.3. Circuit diagram of a corrected switched capacitor integrator.
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library IEEE;

use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity integrator is
end integrator;

architecture switchCap of integrator is
quantity Vout:real;

signal vin::std logic := ’0’;

begin
-- Initial Conditions

break Vout => -1000.0

if vin=’0’ use
if (not vout’above(-1000.0))’ use

vout’dot == span(28.0, 37.0);

elsif (not vout’above(0.0))’ use
vout’dot == span(18.0, 32.0);

elsif (not vout’above(1000.0))’ use
vout’dot == span(8.0, 22.0);

else
vout’dot == span(3.0, 12.0);

end use;
elsif vin=’1’ use

if (not vout’above(-1000.0))’ use
vout’dot == span(-12.0, -3.0);

elsif (not vout’above(0.0))’ use
vout’dot == span(-22.0, -8.0);

elsif (not vout’above(1000.0))’ use
vout’dot == span(-32.0, -18.0);

else
vout’dot == span(-37.0, -28.0);

end use;
end use;
process begin

assign(vin,’1’,100,100);

assign(vin,’0’,100,100);

assert (Vout’above(-2000.0) and
not Vout’above(2000.0))

report ‘‘Error: The output voltage railed.’’

severity failure;

end switchCap;

Figure 6.4. VHDL-AMS for a fixed switched capacitor integrator.
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p3

[0, 0]〈fail := T 〉
∨Vout ≥ 2000)}

t10

(c)

{¬fail ∧ (Vout ≤ −2000

p1

p2

{¬fail}
[100, 100]〈Vin := F 〉
{¬fail}

t8

(b)

[100, 100]〈Vin := T 〉 t9

t0 〈V̇ out := [28, 37], V̇ out [28,37] := T, V̇ out [18,32] := F, ...〉
{¬fail ∧ ¬Vin ∧ ¬(Vout ≥ −1000) ∧ ¬V̇ out [28,37] ∧ ...} [0, 0]

(a)

p0

t4

t2t6

t1t7

t5 t3

Q0 = {Vout = −1000} R0 = {V̇ out = [18, 32]} S0 = {¬Vin,¬fail , V̇ out [18,32],¬V̇ out [28,37], ...}

Figure 6.5. LHPN model of fixed switched capacitor integrator.

32 mV/µs when it is below 0 mV, a range of 8 to 22 mV/µs when it is below 1000 mV,

and a range of 3 to 12 /mV/µs when it is above 1000 mV. A similar modification is made

for the ranges of rates when Vout is decreasing.

Figure 6.5 shows the LHPN that is automatically generated from the VHDL-AMS

in Figure 6.4. The rate is determined by the LHPN in Figure 6.5a. Note that seven

transitions have been omitted to keep the figure readable. However, transitions t1 through

t7 are of the same form as transition t0 except with a different rate value and enabling

condition on Vout. The LHPN in Figure 6.5b represents the input signal which oscillates

between high and low every 100 µs, and the LHPN in Figure 6.5c is used to indicate if

the failure condition has been reached.

Table 6.3 shows the result of applying ATACS-BDD, ATACS-SMT, and ATACS-DBM

to the fixed integrator example. The table also shows results where the model has been

modified to force failure. In this case, the circuit is forced to fail by modifying the rates
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Table 6.3. Corrected switched capacitor integrator verification results.

Rate Exp. ATACS-BDD ATACS-SMT ATACS-DBM
Ranges Result Time (s) Iter. Time (s) Iter. Time (s) Zones

[−22,−8], [−12,−3] Pass 6* 6* 28 10 < 1 55
[−22,−8], [−12,−3] Pass – – 388 20 – –
[−32,−8], [−32,−3] Fail 9 6 47 10 < 1 14
* Verification result does not match expected result.

such that when decreasing, the output voltage does not taper off as it reaches the rail

value (i.e., when Vout is below zero). The results show that in the situation where the

circuit should pass the verification, ATACS-BDD finds a failure. This false negative is

attributed to the inexactness in ATACS-BDD that is present as a result of the not adding

transitivity constraints at all necessary phases of the the analysis. Due to the high cost of

performing this operation, attempts are made to avoid it. Therefore, potential exists for

the analysis to generate false negatives as in this case. However, if transitivity constraints

are inserted at all required steps of the analysis, system memory is quickly consumed and

analysis can not complete. The ATACS-SMT model checker, however, can correctly

determine that the circuit does not violate the property for up to 20 iterations since it is

exact. ATACS-DBM correctly verifies the circuit in both situations.

6.4 Optimization Evaluation

Results comparing performance of ATACS-BDD with various optimizations enabled

and disabled are shown in Table 6.4. Specifically, results where constraints are added

on a limited basis and the optimized time elapse is used, are shown along side results

where each of these capabilities has been disabled. The second column shows results

where constraints are inserted at all necessary points but the optimized time elapse is

still enabled. In this case, only the water level monitor examples are able to complete

without running out of memory. The third column shows results where constraints are

added on a limited basis but the original time elapse calculation is applied. In this case,

the corrected switched capacitor integrator examples exceed memory after completing

only a few iterations. These results clearly demonstrate the necessity of optimizations to

achieve reasonable performance.
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Table 6.4. Corrected switched capacitor integrator verification results.

Opt. Cons. Unopt. Cons. Opt. Cons.
Rate Exp. Opt. T.E. Opt. T.E. Unopt. T.E.

Ranges Result Time (s) Iter. Time (s) Iter. Time (s) Iter.
Water Level Monitor

0 ≤ y ≤ 13 Pass < 1 5 8 5 4 5
0 ≤ y ≤ 12 Fail < 1 4 3 4 3 4
1 ≤ y ≤ 13 Fail < 1 7 10 7 6 7
1 ≤ y ≤ 12 Fail < 1 4 3 4 3 4

Switched Capacitor Integrator
[20, 20] Pass < 1 7 OOM 5 4 7
[18, 22] Fail < 2 11 OOM 5 688 13

Corrected Switched Capacitor Integrator
[−22,−8], [−12,−3] Pass 6* 6* OOM 2 OOM 3
[−32,−8], [−32,−3] Fail 9 6 OOM 2 OOM 2
* Verification result does not match expected result.
OOM = Out of Memory.



CHAPTER 7

CONCLUSIONS

Formal verification of analog and mixed-signal circuits presents several challenges.

The largest of these challenges is the representation of continuous variables. Therefore,

efficient hybrid system verification methods provide potential approaches for verifying

analog and mixed-signal circuits. The modeling and verification methods described in

this dissertation demonstrate that hybrid system analysis approaches can be used with

modifications. Additionally, to encourage the acceptance of formal verification in the

analog and mixed-signal world, designers must be able to specify systems using familiar

methods. Therefore, this dissertation describes methods for generating LHPN models

from VHDL-AMS descriptions and differential equation models. These methods show

success in the verification of AMS circuits.

7.1 Summary

This work begins by describing the approach for modeling AMS systems. Designs

specified in a number of ways including VHDL-AMS are automatically compiled into an

LHPN which includes Boolean signals to represent digital circuitry and continuous vari-

ables to model voltages and currents in the analog circuitry. The LHPN model provides

a formalism for reasoning about the system being analyzed. The LHPN formalism is a

primary contribution of this dissertation. This new modeling method is necessary because

existing hybrid system models such has LHA rely on invariants to force transitions, a

construct not naturally present in AMS circuits; and existing hybrid Petri net models

relied on the notion of continuous quantities that flow between places which is superfluous

to in this application. LHPN models can also be hand-generated by the user, if necessary.

After the LHPN model is created, a symbolic model is generated. The process of

encapsulating the transition behavior of LHPNs in terms of an invariant and guarded

command set is a further contribution of this dissertation. The symbolic model is well-

suited for the BDD based symbolic model checking algorithm and SMT-based bounded
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model checking algorithm. Additionally, system properties are specified as temporal logic

formulas using TCTL. TCTL can be automatically generated from assert statements in

VHDL-AMS or more complicated properties can be specified by the designer.

Once the symbolic model has been constructed, and the property has been specified,

either a BDD based or SMT based model checking algorithm may be applied to check the

property. In the BDD based model checking algorithm, separation predicates are mapped

to Boolean variables so that analysis can be performed using BDD operations. The

Boolean analysis relies on a canonical representation of a restricted form of inequalities.

This algorithm necessitates the addition of constraints among separation predicates—

an expensive operation to perform. Therefore, the algorithm attempts to avoid this

operation resulting in an approximate model checker and the possibility of false negative

results. Alternatively, in the SMT based model checking algorithm, separation predicates

are directly handled by the SMT solver. The BDD based model checker is particularly

well suited for analyzing abstracted models since for larger models, the number of BDD

variables that get created can be very restrictive. The SMT based model checker can

efficiently determine if the full model violates the property given a number of iterations,

however it can never fully guarantee that the property is not violated. These methods

are demonstrated on several examples from the hybrid system and AMS domains.

The contributions of this work result in new methods and tools necessary for the formal

verification of AMS circuits. Specifically, a hybrid modeling method for AMS circuits

known as LHPNs is developed and formally described, and a translation to a symbolic

model suitable for model checking is described. Additionally, two main model checking

algorithms, a BDD based algorithm and an SMT based algorithm, for performing state

space explorations of LHPNs and verifying properties over the state space are developed.

Finally, these methods are applied to several examples demonstrating the usefulness and

necessity of these methods.

7.2 Challenges

There are several challenges associated with this research. Chief among these chal-

lenges is the adaptation of the time elapse method used by the BDD based model checker.

Supporting variables that can change at ranges of rates is much more involved than in

the timed case. The optimized version of time elapse that was developed is crucial to

getting reasonable performance results.
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Another challenge is that a perfect and exact adaptation of the BDD based model

checking algorithm has difficulty completing on even simple examples. This is due to the

fact that addition of transitivity constraints in theory needs to be performed frequently,

but results in an extremely large BDD representation that includes loose constraints,

which are difficult to later remove. Substantial time was spent experimenting with

different approaches and placements of constraint generation. This results in a trade

off between exactness and the ability to arrive at a verification result—a typical model

checking issue.

A final issue is the backward and breadth first nature of the BDD based algorithm in

combination with the use of BDDs. During the debugging process, trying to determine

what state precedes a current state is counter-intuitive. Additionally, since this algorithm

is breadth first, rather than working with individual states that are reachable via a single

transition firing, sets of states are found that can result from firing all possible transitions.

This is multiplied by the very large and complicated state representation due to the use

of BDDs. This issue is partially alleviated by the use of the trace generation algorithm

described in Chapter 4. However, it is not always possible to find a trace due to the trace

algorithm’s significant overhead and the algorithm does not indicate which transition

resulted in the next state. Development of a BDD based forward reachability algorithm

could contribute to reducing this issue as well. However, since the work described in this

dissertation is based on previous work that performs backward reachability, a forward

reachability algorithm has not yet been explored.

7.3 Future Work

There are many potential directions of further investigation in the area of formal

verification of analog/mixed-signal circuits, and more generally in hybrid system modeling

and verification. The development of verification methods for niche AMS applications,

benchmark development, and abstraction approaches are three areas of future work that

merit the most attention. Further descriptions of these particular areas of future work,

and several others, are described here.

7.3.1 Generating Models from SPICE-decks

SPICE is generally considered to be the industrial standard for computer-aided anal-

ysis of microelectronic circuits. Providing a tool that generates models from SPICE-deck
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input files or simulation data would help to encourage the adoption of formal verification

techniques.

Along these lines, in [32], Dastidar and Chakrabarti describe a method for constructing

a finite state machine model of an analog circuit by performing repeated SPICE simula-

tions while varying parameter values. An LHPN model can be constructed in a similar

manner from arbitrarily complex AMS circuits using SPICE simulations or systems of

differential equations using differential equation simulations. This procedure could be

performed by creating multiple simulations with varying input parameters resulting in

sets of time series data. The simulation data would then be subdivided into regions based

on several possible factors (e.g., equal numbers of data points in each region, evenly spaced

regions, etc.). An LHPN or similar model could then be constructed from this subdivided

data.

This approach to constructing models is neither exact nor over-approximate, but it

allows for modeling of potentially very complex systems. Additionally, by adjusting the

number of simulations and the ranges of parameter values, the precision of the model

could be increased or decreased.

7.3.2 Generating VHDL-AMS from LHPNs

Another area of potential investigation is into the generation of VHDL-AMS descrip-

tions from LHPN models. Consider a situation where a complicated circuit consisting of

multiple components is being simulated. Often, a particular component of the circuit may

be a bottleneck in the simulation of the overall circuit. By modeling that component as an

LHPN, applying abstraction techniques, and then generating a VHDL-AMS description

(or similar HDL description that can be simulated) of the abstracted model, there is

potential to dramatically speed up the simulation while still being able to provide useful

information to the designer.

7.3.3 Improved User Feedback

In the case of a property being violated, it is important to provide the designer with

information about the cause of the failure rather than a simple report of failure. Initially,

this information may consist of a trace that resulted in the failure. However, in a large

circuit or in a situation where the failure does not occur for a very long time, a trace

may also be of limited use to the designer. Much work remains to be done in providing

designers with useful information to aid in pinpointing the exact cause of failure.
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Another problem associated with model checking is determining if the property being

verified is meaningful. A positive verification result may mean that the property being

checked is valid or vacuously true. The portion of the design intended to be verified

may not even be exercised by the property. Therefore, an approach to determining the

coverage of the property would be very useful to designers in determining if the design is

well tested.

7.3.4 Verification Reuse

Formal verification tool flows generally operate by taking an input circuit and prop-

erty, and generating a verification result. Upon completion, all computations that are

performed to determine the result are discarded. Therefore, after modifying the circuit

and/or the property, the process begins from scratch. The goal of verification reuse is

to use previous verification runs to more quickly perform future verification runs after

either the model has been slightly changed or the property has been modified. Verification

reuse can be particularly beneficial when the verification process is very time-consuming.

Incremental verification provides one possible approach. In incremental verification,

subsystems are identified and analysis is performed on each subsystem. If a modification

is made to the system, only the impacted subsystems need to be reanalyzed. These

methods can be investigated and applied to the AMS verification domain.

7.3.5 Niche Applications

Given an oscillating input signal, a phase-locked loop (PLL) generates an output signal

with a matching frequency that is in phase with the input by automatically raising or

lowering the frequency of an oscillator until it is matched to the input. PLLs are used in a

wide range of analog and digital systems such as for clock and data recovery in high speed

data streams or for clock generation in high frequency processors. Additionally, PLLs

are notoriously difficult to simulate and validate. This emphasizes the need for improved

verification tools. The work described in this dissertation focuses on developing general

approaches for the formal verification of AMS circuits. However, by focusing on subsets of

AMS circuits such as PLLs (or even particular subcategories of PLLs), formal verification

methods can potentially exploit properties present in that category of circuit resulting

in dramatically improved utility and performance. PLLs are just one of the many niche

circuit categories where AMS formal verification methods developed specifically for that

niche could be of great value.



113

7.3.6 Benchmark Development

During the development of the work described in this dissertation, a significant amount

of time was devoted to developing relevant examples of systems to analyze. This can be

a challenging task given that this work was developed in an academic setting, and the

legal restrictions placed on industry in making their work public. As a result, it can

be difficult for researchers to understand the true challenges including the important

types of circuits and properties of interest that industrial AMS designers are faced with.

Therefore, a suite of benchmark examples with real-world relevance would really benefit

researchers and help to drive the direction of research.

7.3.7 Abstraction and Refinement

A common hurdle associated with model checking is the state space explosion problem.

Therefore, it is necessary to apply abstraction techniques. Abstraction methods can be

applied to the model or to the analysis procedure. In the first case, the full model is

conservatively abstracted into a simpler model, which is then analyzed with the goal

that the abstracted model generates a state space that can be represented using less

memory. In the second case, as the state space is explored, the representation is stored

in an abstract form where additional behavior may be introduced in order to minimize

the state space representation.

One potential approach to abstracting the LHPN model is safe net transformations.

This method has been previously applied to timed Petri nets [72]. The safe net transfor-

mations are used to reduce the size and the complexity of the timed Petri net without

eliminating behavior that is critical to determining if the property is satisfied or violated.

These methods could be similarly applied to LHPN models.

In the case of the BDD based model checker, analysis is impeded by the large number

of BDD variables that are created during analysis. When analyzing a larger system,

this can fully deplete the system resources preventing successful verification. Therefore,

the second type of abstraction approach may be well-suited because it has the potential

to directly reduce the number of BDD variables and thus the BDD explosion problem.

Specifically, rather than creating a new inequality whenever necessary, an already existing

inequality with similar values could be used instead. The decision about whether to create

a new inequality or substitute an existing inequality can be based on the number of BDD

variables that already exist, and/or the difference between the new inequality and the

existing inequality. Both of these factors could be tuned to adjust the level of abstraction.
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The use of abstraction techniques introduces the possibility of falsely reporting that

properties are violated. This necessitates the use of algorithms for detecting if a property

truly fails and if not, refining the abstraction and re-running the verification process.

One potentially promising abstraction and refinement approach is to combine the

BDD based LHPN model checker and SMT based bounded model checker in such a way

that their individual strengths are maximized. Specifically, the BDD based model checker

is capable of performing an unbounded full state space exploration. However, do to the

large number of BDD variables that are created, memory utilization quickly becomes an

issue. This implies that the BDD based model checker would be well-suited for analyzing

abstracted models. The SMT based model checker can efficiently determine if the full

model violates the property given a number of iterations; however it can never fully

guarantee that the property is not violated.

Figure 7.1 shows a potential tool flow that uses the model checkers in combination.

The symbolic model is provided to both model checkers. In the case of the BDD based

model checker, the symbolic model is first abstracted. If the BDD based model checker

determines that the property is violated in the abstract model, the SMT based model

checker is used with the full model to ensure that the failure is not a false negative. In

order to accomplish this, it is necessary for the BDD based model checker to specify the

number of iterations that are required for the abstract model to fail. If the SMT based

model checker verifies that the full symbolic model does fail in that number of iterations,

verification is complete. If the full symbolic model does not violate the property, the

violation is determined to be a false negative and the unsatisfying core is used to refine

the abstract model. The process then repeats. If at any point, the BDD based model

checker determines that the abstract symbolic model does not violate the property, then

the property is certainly not violated in the full model and the verification can terminate

immediately.
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Figure 7.1. Using the SMT model checker in combination with the BDD model checker.
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