
COMPUTER-AIDED SYNTHESIS AND VERIFICATION OFGATE-LEVEL TIMED CIRCUITS
a dissertationsubmitted to the department of electrical engineeringand the committee on graduate studiesof stanford universityin partial fulfillment of the requirementsfor the degree ofdoctor of philosophy

ByChristopher John MyersOctober 1995

c
 Copyright 1995byChristopher John Myers
ii

I certify that I have read this thesis and that in my opinionit is fully adequate, in scope and in quality, as a dissertationfor the degree of Doctor of Philosophy.Teresa H.-Y. Meng(Principal Adviser)I certify that I have read this thesis and that in my opinionit is fully adequate, in scope and in quality, as a dissertationfor the degree of Doctor of Philosophy.David L. DillI certify that I have read this thesis and that in my opinionit is fully adequate, in scope and in quality, as a dissertationfor the degree of Doctor of Philosophy.Adam P. ArkinApproved for the University Committee on Graduate Studies:Dean of Graduate Studies & Researchiii

AbstractIn recent years, there has been a resurgence of interest in the design of asynchronous cir-cuits due to their ability to eliminate clock skew problems, achieve average case perfor-mance, adapt to processing and environmental variations, provide component modularity,and lower system power requirements. Traditional academic asynchronous designs methodsuse unbounded delay assumptions, resulting in circuits that are veri�able, but ignore timingfor simplicity, leading to unnecessarily conservative designs. In industry, however, timingis critical to reduce both chip area and circuit delay. Due to a lack of formal methodsthat handle timing information correctly, circuits with timing constraints usually requireextensive simulation to gain con�dence in the design.This thesis bridges this gap by introducing timed circuits in which explicit timing infor-mation is incorporated into the speci�cation and utilized throughout the design procedureto optimize the implementation. Our timed circuits are more e�cient than those producedusing untimed methods and more reliable than those produced using ad hoc design tech-niques. Timing analysis, however, often introduces substantial complexity into the designprocedure, and has hitherto either been avoided, simpli�ed, or considered only after syn-thesis. In this thesis, we describe an exact and e�cient timing analysis algorithm, and itsapplication to the automatic synthesis and veri�cation of gate-level timed circuits. Oursynthesis procedure generates hazard-free timed circuits and maps the resulting implemen-tations to practical, semi-custom gate libraries. The resulting implementations are up to40 percent smaller and 50 percent faster than previous asynchronous designs. We alsodemonstrate that our timed designs can be smaller and faster than their synchronous coun-terparts. After back-annotating the synthesized circuits, our veri�cation procedure checksthat all circuits satisfy their speci�cations. This procedure has also been applied to a widecollection of highly concurrent timed circuits that could not previously be veri�ed.iv

AcknowledgmentsI am indebted to my adviser, Professor Teresa Meng, for suggesting this research topic tome and giving me support and patience as I struggled with it. Professor David Dill, myassociate adviser, provided substantial technical support, and I would like to thank himfor many very enlightening discussions about timed circuits and many other matters. I amgrateful to Dr. Adam Arkin for serving as my third reader and showing me a wider scope ofapplication for my research. Professor Giovanni DeMicheli is also gratefully acknowledgedfor his advice on my work. Finally, I would like to thank Professor Greg Kovacs andProfessor Kunle Olukotun for serving on my orals committee.I have been very fortunate in my years at Caltech and Stanford to get the opportunityto work with many brilliant people. I would like to thank Alain Martin for introducingme to the world of asynchronous design. Peter Beerel has been my colleague, o�cemate,and friend since I arrived at Stanford. I greatly appreciate his comments and criticizismswhich signi�cantly improved the quality of this work. In particular, his collaboration onthe synthesis and technology mapping chapters is gratefully acknowledged. I was also veryfortunate to be able to collaborate with Tom Rokicki on the timing analysis and veri�cationchapters. I'm indebted to him for helping me deal with a world �lled with choices. I wouldalso like to thank all the past members of the Stanford asynchronous group (Jerry Burch,Bill Coates, Al Davis, Jeremy Gunawardena, Steve Nowick, Polly Siegel, and Ken Yun) forproviding a stimulating working environment. Finally, I would like to thank Steve Burnsand Gaetano Borriello for their advice and support through the years.Numerous individuals provided invaluable moral support. In particular, I would like tothank Janet Lai for her friendship. I'm grateful to Lilian Betters for her administrativehelp throughout the years, especially during my job search. I would also like to thank themany other friends who gave me wonderful distractions from work (Francis Chong, KorhanGurkan, Je� Jones, Joe Lauer, John Lazzaro, Garland Lee, Jared Levy, Amit Mehra, Mishav

Samoilov, Craig Sosin, Emily Wen, and Su-lin Wu), the other members of Teresa's group(Navin Chaddha, Ben Gordon, Andy Hung, Won Namgoong, Clem Portmann, Wee-chiewTan, Tony Todesco, and Ely Tsern), and my parents and family for their encouragementand support.This work was supported by an NSF fellowship, the Semiconductor Research Corpo-ration contract 93-DJ-205, a grant from the NSF PYI Program, the O�ce of Navel Re-search contract N00014-89-J-3036, and the Advanced Research Projects Agency contractDABT63-91-K-0002. Finally, much of this thesis was reworked at Intel in Israel during thesummer of 1995 while consulting with Shai Rotem whom I am grateful to for allowing methe opportunity to apply my work.

vi

Contents1 Introduction 11.1 Asynchronous Circuit Design : 21.1.1 Delay-Insensitive Circuits : 41.1.2 Quasi-Delay Insensitive and Speed-Independent Circuits : : : : : : : 51.1.3 Fundamental-Mode Circuits : 51.1.4 Timed Circuits : 61.2 Contributions : 71.3 Thesis Overview : 82 Timed Speci�cations 102.1 Timed Handshaking Expansions : 102.1.1 Modules, Signal Declarations, and Processes : : : : : : : : : : : : : : 112.1.2 Basic Commands and Their Composition : : : : : : : : : : : : : : : 122.1.3 Guarded Commands : 122.1.4 Example : 142.2 Timed Event-Rule Structures : 182.3 Timed Con�gurations : 192.4 Interpreting the Speci�cation Language : 212.4.1 Declarations : 212.4.2 Composition of Timed Event-Rule Structures : : : : : : : : : : : : : 222.4.3 Renaming of Timed Event-Rule Structures : : : : : : : : : : : : : : 232.4.4 Interpretation of a Non-Repetitive Process : : : : : : : : : : : : : : : 232.4.5 Interpretation of a Repetitive Process : : : : : : : : : : : : : : : : : 252.4.6 Vacuous Events : 262.4.7 Interpretation of a Module : 26vii

2.4.8 Example : 273 Timing Analysis 323.1 Constraint graphs : 333.2 Estimating the Worst-Case Time Di�erence : : : : : : : : : : : : : : : : : : 363.2.1 Worst-Case Time Di�erence : 363.2.2 Algorithm to Estimate the Worst-Case Time Di�erence : : : : : : : 373.2.3 Proof of Correctness : 393.2.4 Complexity of the Algorithm : 403.2.5 Extensions to Find a Better Estimate : : : : : : : : : : : : : : : : : 403.2.6 Termination of the Algorithm : 413.2.7 Removing Redundant Rules : 413.3 Orbital Nets : 423.3.1 Timing Requirements : 433.3.2 Simultaneous Actions : 453.3.3 Operational Semantics : 463.3.4 Transformation from a Timed ER Structure to an Orbital Net : : : 473.3.5 Satisfying the Single Behavior Place Requirement : : : : : : : : : : : 483.4 Partial Order Timing : 503.4.1 Geometric Regions : 533.4.2 State Space Exploration with Geometric Timing : : : : : : : : : : : 543.4.3 Performance of Geometric Timing : : : : : : : : : : : : : : : : : : : 543.4.4 Concurrency, Causality, and Posets : : : : : : : : : : : : : : : : : : : 553.4.5 State Space Exploration with Partial Order Timing : : : : : : : : : 573.4.6 E�ciency Considerations : 583.5 Finding the Reduced State Graph : 584 Synthesis 654.1 Sum-of-Products Implementation : 664.2 Generalized C-Implementation : 674.3 Standard C-Implementation : 694.3.1 Excitation Regions and Quiescent States : : : : : : : : : : : : : : : : 694.3.2 Correct Covers : 704.4 Finding Enabled Cubes and Trigger Cubes : : : : : : : : : : : : : : : : : : 71viii

4.5 Finding an Optimal Correct Cover : 724.6 Synthesis Results : 765 Technology Mapping 805.1 Gate Libraries : 815.2 Decomposition : 825.2.1 Searching the Decomposition Space : : : : : : : : : : : : : : : : : : : 835.2.2 Decomposition Through Resynthesis : : : : : : : : : : : : : : : : : : 845.2.3 Multi-level Decompositions : 885.3 Example : 895.4 Technology Mapping Results : 916 Design Examples 946.1 MMU Controller : 946.1.1 The Memory Data Load Cycle : 956.1.2 Complete MMU : 996.2 DRAM Controller : 1026.3 Two-bit Synchronous Counter : 1067 Veri�cation 1097.1 Behavioral Semantics : 1107.2 Generating the Orbital Net Representations : : : : : : : : : : : : : : : : : : 1117.3 Reporting Failures : 1127.4 Veri�cation Results : 1138 Conclusions 1168.1 Summary : 1168.2 Future Work : 1178.2.1 Speci�cation : 1178.2.2 Compilation : 1178.2.3 Technology Mapping and Module Generation : : : : : : : : : : : : : 1188.2.4 Veri�cation : 1188.2.5 Asynchronous Datapaths : 1198.2.6 Interfacing with Synchronous Designs : : : : : : : : : : : : : : : : : 119ix

List of Tables1 Enabled cubes and trigger cubes for the SEL. : : : : : : : : : : : : : : : : : 722 CC table for (out2o #; 0) from the SEL. : 743 CC table for (out2o #; 0) from the SEL after removing dominating columns. 754 Synthesis results. : 775 Technology mapping results. : 926 Production rules for speed-independent and timed circuits for the MDl cycle. 987 Veri�cation results. : 114

x

List of Figures1 Modules, signal declarations, and processes. : : : : : : : : : : : : : : : : : : 122 Basic commands and their composition. : 123 Guarded commands. : 134 (a) CSP speci�cation and (b) block diagram for a port selector (SEL). : : : 145 Part of the timed HSE speci�cation for the SEL. : : : : : : : : : : : : : : : 176 Reshu�ing of the selctrl process. : 177 Complete BNF description for the timed HSE speci�cation language. : : : : 298 Part of the timed HSE speci�cation for the SEL. : : : : : : : : : : : : : : : 309 Format for a timed ER structure. : 3010 Timed ER structure for the sel process from the SEL. : : : : : : : : : : : : 3111 Timed HSE speci�cation for a SCSI protocol controller. : : : : : : : : : : : 3412 Cyclic constraint graph for a SCSI protocol controller. : : : : : : : : : : : : 3413 Part of the acyclic constraint graph for the SCSI protocol controller. : : : : 3514 Algorithm to �nd an estimate of the worst-case time di�erence in a cyclicgraph. : 3815 Algorithm to �nd a time di�erence in an acyclic graph. : : : : : : : : : : : 3816 Algorithm to �nd a maximum time di�erence in an acyclic graph. : : : : : 3917 Algorithm to �nd redundant rules. : 4218 (a)A D-type
ip-
op; (b) its timing requirements represented using a timingdiagram; (c) its timing requirements represented using an orbital net. : : : 4419 (a) AND gate with inputs a and b, and output d; (b) orbital net for itsfunctional behavior; (c) delay bu�er with input c, output d, and delay of h2; 4i. 4620 Algorithm to transform a timed ER structure to an orbital net. : : : : : : : 4921 (a) Orbital net for the sel process from the SEL; (b) part of the orbital netafter composition with the other processes. : : : : : : : : : : : : : : : : : : 50xi

22 (a) Fragment of the orbital net that violates the single behavior place re-quirement; (b) graphical representation of the desired timing behavior. : : : 5123 (a) Orbital net that satis�es the single behavior place requirement; graphicalrepresentation of the timing behavior of c0 (b) and c1 (c). : : : : : : : : : : 5124 (a) Fragment of an orbital net with a behavior place that has multiple tran-sitions in its postset; (b) part of the transformed orbital net that satis�es thesingle behavior place requirement. : 5125 (a) Unit-cube, (b) discrete, and (c) geometric representations of the timedstate space. : 5226 The adverse example adv4x40 with n = 4 and k = 40. : : : : : : : : : : : : 5527 Geometric regions from the adverse example. : : : : : : : : : : : : : : : : : 5628 One poset from the adverse example. : 5629 Algorithm to �nd the reduced state graph. : : : : : : : : : : : : : : : : : : : 6030 Algorithm to check if an event is slow. : 6131 (a) SG and (b) RSG for the SCSI protocol controller. : : : : : : : : : : : : 6232 Redundant rules from the SCSI protocol controller. : : : : : : : : : : : : : : 6333 Reduced state graph for the SCSI protocol controller. : : : : : : : : : : : : 6434 A hazardous sum-of-products implementation of out2o from the SEL. : : : : 6735 (a) The generalized C-element con�guration with (b) weak-feedback and (c)fully-static CMOS implementations. : 6836 A hazardous gate-level implementation of out2o from the SEL. : : : : : : : 6837 The standard C-implementation. : 6938 Gate-level (a) timed and (b) speed-independent circuits for the SEL. : : : : 7639 Enabled cubes and trigger cubes from the SCSI protocol controller. : : : : : 7840 CC table from the SCSI protocol controller. : : : : : : : : : : : : : : : : : : 7941 Production rules from the SCSI protocol controller. : : : : : : : : : : : : : : 7942 (a) Part of the orbital net for the tsbm, (b) a standard C-implementation,and (c) a generalized C-implementation of the signal DReqo. : : : : : : : : : 8343 (a) Part of the orbital net for a decomposition using a trigger signal, and (b)corresponding generalized C-implementation. : : : : : : : : : : : : : : : : : 8644 (a) Part of the orbital net for a decomposition using a context signal, and(b) corresponding generalized C-implementation. : : : : : : : : : : : : : : : 87xii

45 (a) Part of the orbital net for a multi-level decomposition, and (b) corre-sponding generalized C-element implementation of DReqo with a maximumfanin of two. : 8846 (a) Part of the orbital net for the SELopt, and (b) part of the orbital netafter a decomposition of the signal selo. : 9047 The gate-level timed circuit implementation of the SELopt (a) before decom-position; after decomposition to (b) 3-input gates and (c) 2-input gates. : : 9148 Block diagram for the MDl cycle of the MMU controller. : : : : : : : : : : : 9549 The cyclic constraint graph for the unoptimized MDl cycle. : : : : : : : : : 9650 The cyclic constraint graph for the optimized MDl cycle. : : : : : : : : : : : 9751 The cyclic constraint graph for the persistent MDl cycle. : : : : : : : : : : : 9752 (a) Timed and (b) speed-independent implementations for the MDl cycle. : 9953 Part of the timed HSE speci�cation for the complete MMU controller. : : : 10054 Gate-level (a) timed and (b) speed-independent circuits for the MMU controller.10155 Block diagram for a DRAM interface. : 10356 The burst-mode speci�cation for the DRAM controller. : : : : : : : : : : : 10357 Part of the timed HSE speci�cation of the DRAM controller. : : : : : : : : 10458 Overall implementation of the DRAM controller. : : : : : : : : : : : : : : : 10459 Complex-gate implementation of the cas signal for the DRAM controller. : 10560 (a) Timed and (b) synchronous circuits for a DRAM controller. : : : : : : : 10561 The cyclic constraint graph speci�cation for a two-bit synchronous counter:(a) initial speci�cation and (b) �nal speci�cation. : : : : : : : : : : : : : : : 10662 Complex-gate implementation of a two-bit synchronous counter. : : : : : : 10763 Implementation of a two-bit synchronous counter derived using SIS. : : : : 10764 (a) AND gate with inputs a and b, and output d; (b) orbital net for functionalbehavior; (c) delay bu�er with input c, output d, and delay of h2; 4i. : : : : 11065 Part of the speci�cation orbital net for the SEL. : : : : : : : : : : : : : : : 11166 Implementation of the SEL which fails veri�cation. : : : : : : : : : : : : : : 11267 Seitz queue element. : 113xiii

Chapter 1Introduction all pain disappears it's the nature of my circuitry|nine inch nailsI must govern the clock, not be governed by it.|Golda MeirThere has been a recent resurgence of interest in the design of asynchronous circuits dueto their potential to provide more robust, higher performance, and lower power imple-mentations. Unfortunately, these advantages have not yet been fully realized as currentasynchronous design methodologies either produce ine�cient or unreliable designs. Tra-ditional academic asynchronous design methodologies use unbounded delay assumptions,resulting in circuits that are veri�able, but ignore timing for simplicity, leading to unneces-sarily conservative designs. In industry, however, timing is critical to reduce both chip areaand circuit delay. Due to the lack of formal methods to handle timing information correctly,circuits with timing constraints usually require extensive simulation to gain con�dence inthe design. Simulation, however, is not perfect so unreliable designs can be produced. Thisfact has proven to be a major stumbling block to the widespread acceptance of asynchronouscircuits within industry.This thesis bridges this gap between academia and industry by introducing timed cir-cuits in which explicit timing information is incorporated into the speci�cation and utilizedthroughout the design procedure to optimize the implementation. Timed circuits can besigni�cantly smaller and faster than those produced using traditional formal methods, andthey are more reliable than those produced using ad hoc techniques. The speci�cation1

CHAPTER 1. INTRODUCTION 2of timing constraints also facilitates a natural interaction between synchronous and asyn-chronous circuits.1.1 Asynchronous Circuit DesignAn asynchronous circuit is one in which synchronization is performed without a globalclock. Asynchronous circuits have several advantages over their synchronous counterpartsincluding:1. Elimination of clock skew problems. As systems become larger, increasing amounts ofdesign e�ort is necessary to guarantee minimal skew in the arrival time of the clocksignal at di�erent parts of the chip. In the DEC alphamicroprocessor, nearly a third ofthe silicon area is required for the clock distribution network [25]. In an asynchronouscircuit, skew in synchronization signals can be tolerated, so this extra circuitry is notnecessary.2. Average-case performance. In synchronous systems, the performance is dictated byworst-case conditions. The clock period must be set to be long enough to accommo-date the slowest operation even though the average delay of the operation is oftenmuch shorter. In asynchronous circuits, the speed of the circuit is allowed to changedynamically, so the performance is governed by the average-case delay.3. Adaptivity to processing and environmental variations. The delay of a VLSI circuitcan vary signi�cantly over di�erent processing runs, supply voltages, and operatingtemperatures. For this reason, synchronous designs are simulated over a wide variationof these parameters, and the clock is set so that the majority of chips producedoperate correctly under some allowed variations. Due to their adaptive nature, anasynchronous circuit operates correctly under all variations and simply speeds up orslows down, as necessary.4. Component modularity. In an asynchronous system, components can be interfacedwithout the di�culties associated with synchronizing clocks in a synchronous system.Also, when a new faster component becomes available, it can often be easily insertedinto the system without requiring any other changes to the rest of the system resultingin a corresponding improvement in system performance.

CHAPTER 1. INTRODUCTION 35. Lower system power requirements. Asynchronous circuits reduce synchronizationpower by not requiring additional clock drivers and bu�ers to limit clock skew. Theycan also automatically power down unused components. In many synchronous appli-cations, more than half of the power is wasted with spurious transitions [63]. Asyn-chronous circuits have no spurious transitions. Finally, asynchronous circuits caneasily be adjusted to make e�cient use of a dynamic power supply.While asynchronous designs have long been used in interface circuits, they are nowbeing considered for the design of high-performance processors [45, 76, 27, 55] and low-power embedded controllers and portable devices [71]. Unfortunately, the advantages ofasynchronous circuits have not yet been fully realized for several reasons, including:1. Lack of mature computer-aided design tools. In the past several years, there has been arapid development of commercial VLSI design tools. These tools, however, are limitedto synchronous designs. While many asynchronous design methods have supportingCAD tools, these tools are still in the experimental phase.2. Large area overhead for the removal of hazards. A hazard is a spurious signal tran-sition, or glitch. While hazards can be ignored in a synchronous design as they are�ltered out by the clock signal, any hazard in an asynchronous design can potentiallylead to a malfunction. Therefore, careful design is necessary to avoid hazards in anasynchronous design which often leads to a signi�cant increase in circuit area.3. Di�culty in interfacing with existing synchronous designs. Many asynchronous de-sign methods require the ability to slow down the environment by withholding anacknowledgment. When interfacing with a synchronous design, this is typically notpossible.4. Necessity for custom design. As the pace of technology increases, the life spans ofproducts decrease forcing the VLSI industry to often turn to semi-custom componentssuch as standard-cells and gate-arrays to improve time-to-market. However, manyasynchronous design procedures require the use of special complex-gates.5. Unreliable designs. In order to get e�cient implementations, many asynchronouscircuit designers play tricks and make assumptions which must be checked with simu-lation. Unfortunately, simulation is not perfect so unreliable designs can be produced.

CHAPTER 1. INTRODUCTION 4This thesis addresses each of these issues by developing computer-aided design tools thatmake use of timing throughout the design procedure to produce both e�cient and reliabledesigns that can be mapped to practical gate libraries and interfaced with synchronousdesigns. This thesis concentrates on the automated design of control circuits, since, dueto their regular geometry, datapath modules are usually custom designed to optimize forperformance. The various techniques for the design of asynchronous datapaths such asdual-rail encoding and bundled data are described in [67, 13, 22, 21, 44, 47].Many other techniques have been proposed for the design of asynchronous control cir-cuits. The rest of this section brie
y describes several of these approaches categorized bytheir timing model. For a more complete description, please see [30].1.1.1 Delay-Insensitive CircuitsA delay-insensitive circuit is one in which its correctness is independent of both gate andwire delays. In [43], Martin proved that when the gate-library is restricted to single-outputgates, this class of circuits is severely limited to those which use Muller C-elements, anasynchronous memory element, as the only multiple-input gates.In order to address this problem, many researchers introduce several specially designedmultiple-output complex gates. Molnar, et. al. [48] developed a technique which usedcarefully designed modules which are composed in a delay-insensitive manner. These mod-ules could be either clock-free with internal delay elements to guarantee correctness orlocally-clocked Q-modules. Other module-based delay-insensitive design procedures exploithigher-level descriptions such as Occam [13] used by Brunvand or a trace-based language [26]proposed by Ebergen. Automatic compilation techniques are applied to these higher-leveldescriptions to produce circuit implementations using complex-gate modules.The major advantage of delay-insensitive designs is modularity. Delay-insensitive mod-ules are easily composed without needing to worry about gate or wire delays. They are veryrobust and can achieve average-case performance. Unfortunately, they have several seriousdisadvantages. There can be a large area and delay overhead to achieve delay-insensitivity.It is also impossible for a delay-insensitive design to interface delay-insensitively with asynchronous environment. Finally, the modules required can be large and complex customdesigned gates which may be di�cult to design reliably.

CHAPTER 1. INTRODUCTION 51.1.2 Quasi-Delay Insensitive and Speed-Independent CircuitsMany methodologies have been proposed for the synthesis of quasi-delay insensitive andspeed-independent circuits in which correctness is independent of gate delays but delaysof certain wire forks called isochronic forks are negligible. The main di�erence betweenquasi-delay insensitive and speed-independent circuits is that all forks in speed-independentcircuits must be isochronic.A quasi-delay insensitive design technique was proposed by Martin [44] which beginsfrom a high-level speci�cation using a modi�ed version of Hoare's communicating sequentialprocesses (CSP) [33] which is systematically translated to a circuit implementation. Asimilar technique proposed by van Berkel [69] automatically compiles a circuit describedusing a language called Tangram to a handshake circuit implementation. Several speed-independent design techniques are based on the signal transition graph (STG) speci�cationsuch as the work by Chu [17] and Meng [47]. The work by Chu and Meng, however, oftenproduce circuits that require large complex atomic gates. To address this problem, Beerelet. al. [7] developed constraints to add to the synthesis method to produce implementationsusing only basic gates such as AND gates, OR gates, and C-elements. Since then there hasbeen some additional work in this area by Lin and Lin [42] and Kondratyev et. al. [37].The primary advantage of quasi-delay insensitive and speed-independent circuits overdelay-insensitive designs is the ability to map the design to basic gates thus allowingsemi-custom implementations. However, careful design is necessary to guarantee that theisochronic fork assumption is met. There still can be signi�cant area overhead associatedwith the need to remove hazards in these circuits. Finally, quasi-delay insensitive andspeed-independent circuits cannot be interfaced with synchronous environments.1.1.3 Fundamental-Mode CircuitsOther design methods use the fundamental-mode assumption which takes advantage oftiming properties in a limited way by assuming that the environment must wait long enoughfor the circuit to stabilize before inputs are changed. To achieve this, these techniques mustassume that the gate and wire delays are bounded.Techniques using the fundamental-mode assumption originated with Hu�man [34], andwere later extended by Unger [68]. Original fundamental-mode techniques allowed only asingle input to change at a time. Recently, Davis's group at Hewlett Packard [20] extended

CHAPTER 1. INTRODUCTION 6fundamental-mode to allow multiple input change. Nowick developed a locally-clockedmethod based on this work [57], and Yun introduced a clock-free method [83].By assuming that the circuit has a bounded delay, it is now possible to construct asyn-chronous circuits which interface with synchronous environments such as the DRAM con-troller from [58]. Siegal [65] has also shown that with minor modi�cations that standardsynchronous technology mapping techniques can be applied to map these designs to practicalsemi-custom gate libraries. However, these circuits may require additional delay elementsto guarantee that the fundamental-mode assumption is met, degrading the performance.Also, the fundamental-mode assumption must be guaranteed to hold under all operatingconditions, so these circuits may not be able to take full advantage of variations in de-lay such as those resulting from data-dependencies. Finally, since these methods limit theconcurrency within a circuit, they may result in ine�cient implementations.1.1.4 Timed CircuitsTimed circuits are a class of asynchronous circuits that incorporate explicit timing infor-mation during some portion of synthesis. This timing information is typically given asbounds on gate, wire, and environment delays. Many of the asynchronous designs done inindustry today are timed. That is, their correctness is dependent on meeting certain timingconstraints. However, the techniques used for the design of these circuits are typically adhoc, and can result in unreliable designs.Some systematic techniques exist for the design of timed circuits. Borriello describes in[9] a method which uses timing information in the design of transducers, interfaces betweensynchronous and asynchronous circuits. Lavagno in [38] develops a synthesis techniquewhich uses methods similar to Chu [17] and Meng [47] to get a complex gate implementationwhich is then mapped to a gate library using synchronous technology mapping techniques.In both of these approaches, timing analysis is applied only after synthesis to verify thathazards do not exist. If hazards are detected, delay elements are added to avoid them,degrading the reliability and performance of the implementation. Beerel et. al. has shownin [7] that the more conservative speed-independent model while resulting in somewhatlarger circuits actually produces faster circuits compared with the timed circuits describedin [38]. This surprising result can be attributed to the fact that these timed circuits oftenneed to have delay elements added to the critical path to remove hazards.

CHAPTER 1. INTRODUCTION 71.2 ContributionsThe major contribution of this thesis is a new automatic method for the synthesis and veri-�cation of gate-level timed circuits. The development of a systematic design procedure thatincorporates timing information bridges the gap between systematic, untimed asynchronousdesign methods in academia and ad hoc, timed asynchronous design methods in industry.The resulting implementations are both more e�cient than previous untimed methods andmore reliable than previous timed methods. The speci�cation of timing constraints alsofacilitates a natural interaction between synchronous and asynchronous circuits.We outline our contributions in more detail, as follows:We have proposed a methodology for the speci�cation of timed circuits using a high-levellanguage description. The speci�cation is capable of specifying causality, concurrency, andconditional behavior, or choice, and it is shown to be general enough to specify practicalsystems. We have also developed procedures for the automatic compilation of this high-level language into a lower-level graphical representation which is conducive to automatedtiming analysis procedures.We have developed two e�cient timing analysis algorithms. One is a heuristic algorithmused to �nd the time di�erence between any two events in a deterministic graphical speci�-cation. The other is an exact and e�cient method of exploring the timed state space usinggeometric regions and partial order information. We have applied these timing analysisalgorithms to both the synthesis and veri�cation of timed circuits.To address synthesis, we have created a complete synthesis procedure from a high-levellanguage to a hazard-free timed circuit. A design strategy and correctness constraints arederived to facilitate the use of semi-custom components. Since the synthesis procedureutilizes the timing information throughout the design procedure to optimize the implemen-tation, extra circuitry is only added to remove hazards that are shown to be able to occurunder the given timing constraints. Therefore, our timed circuits can be signi�cantly smallerand faster than those produced using traditional untimed methods. Our synthesis proce-dure has been fully automated in the CAD tool ATACS and applied to several examples. Theresulting timed circuit implementations are not only up to 40 percent smaller and 50 percentfaster than implementations produced using other asynchronous design methodologies, butalso they are can be smaller and faster than their synchronous counterparts.

CHAPTER 1. INTRODUCTION 8We have developed an automated procedure for the technology mapping of our timedcircuits to practical gate libraries. After using our synthesis procedure to generate atechnology-independent timed circuit netlist, the procedure then investigates simultane-ous decompositions of all high-fanin gates by adding state variables to the the speci�cationand performing resynthesis. Although multiple decompositions are explored, timing in-formation is utilized to signi�cantly reduce their number. Once all gates are su�cientlydecomposed, the netlist can be mapped to the given gate library, taking advantage of anycompact complex gates available.To address veri�cation, we have developed a complete veri�cation procedure capableof checking that the circuit that is built satis�es its original speci�cation. After synthesis,the timed circuit implementation is back-annotated with bounds on the minimum andmaximum delay of each gate taken from the given cell-library and veri�ed to satisfy its timedspeci�cation. The veri�cation procedure has also been fully automated, and it is shown tobe able to rapidly verify larger, more concurrent timed circuits than could previously beveri�ed using traditional techniques.1.3 Thesis OverviewA circuit is initially described using a high-level speci�cation language. Chapter 2 describesboth the formal syntax and semantics of the initial speci�cation language.In order to perform synthesis or veri�cation it is necessary to determine the reachablestate space of the system under consideration. For timed systems, this requires an e�cienttiming analysis algorithm. Chapter 3 describes two timing analysis algorithms including anexact and e�cient timing analysis algorithm used in the subsequent chapters for synthesis,technology mapping, and veri�cation.Chapter 4 describes the complete synthesis procedure from a high-level language speci�-cation to a hazard-free gate-level timed circuit implementation. This chapter �rst developscorrectness constraints at a theoretical level which must be met by the synthesis procedure.Then, it describes the synthesis algorithms in detail.Chapter 5 describes a procedure to map our timed circuits to practical gate libraries.In particular, this chapter describes a new technique to decompose high-fanin gates. Thisdecomposition technique uses an iterative procedure to guarantee correctness under thegiven timing constraints.

CHAPTER 1. INTRODUCTION 9In order to illustrate the use of the timed circuit design procedure, chapter 6 presentsseveral design examples.Once the circuit is synthesized, it is back-annotated with delays from the given gatelibrary and veri�ed. Chapter 7 describes the veri�cation procedure.Finally, chapter 8 gives our conclusions and some ideas for directions of future research.

Chapter 2Timed Speci�cations: : :an event is an action which one can choose to regard as indivisible|it either has happened or has not according to our description of some process.This is not to say that an event is indivisible, and without detailed structure,: : :historians may talk of the event of a battle or the birth of a famous person|not just single events to the people involved at the time!|Glynn WinskelThe �rst step in any design is to specify what is to be built. Many approaches havebeen taken for the speci�cation of asynchronous circuits. Some approaches use languagessuch as communicating sequential processes (CSP) [44], Occam [12], and Tangram [70].Other approaches use graphs such as I-nets [48], signal transition graphs [17] [47], changediagrams [75], burst-mode state machines [20] [56] [81], and state graphs [7]. While graphsare conducive to automated timing analysis and synthesis algorithms, they are cumbersomefor specifying a large system. Languages, however, allow large designs to be speci�ed clearlyand concisely. For these reasons, we use a language as the initial speci�cation of our timeddesigns which is then compiled as described in the next chapter to a graphical representationfor timing analysis. This chapter formally de�nes both the syntax and semantics of ourspeci�cation language.2.1 Timed Handshaking ExpansionsOur timed circuits are speci�ed using timed handshaking expansions (HSE). These speci�-cations are easily derivable, as illustrated in an example later, using techniques similar tothose described in [44] from a higher-level description in Martin's version [44] of Hoare's10

CHAPTER 2. TIMED SPECIFICATIONS 11CSP language [33]. The syntax of the timed HSE language is described in this section.The untimed portion of the timed HSE language is similar in form to Martin's handshakingexpansions used in the design of speed-independent asynchronous circuits [44]. Timing isadded to the speci�cation by associating a lower and upper bound on the delay of eachsignal transition in the signal's declaration.In this section, each language construct is �rst described informally, and at the endof each subsection the syntax rules of the language constructs are given using an abstractgrammar. An abstract grammar is a common way of providing a semi-formal description ofa language concisely by ignoring issues such as precedence and ambiguity. The language isde�ned precisely using a BNF description in an appendix at the end of this chapter. In theabstract grammar notation, the left-hand side and right-hand side are separated by \::=".If there are multiple alternatives on the right-hand side, they are separated by \j". In thesyntax rules, boldface words denote keywords, words enclosed in angle brackets \h i" denotelanguage constructs which are described by other syntax rules, italicized words denotelanguage constructs which are only informally described in the text, and \ID" representsan identi�er.2.1.1 Modules, Signal Declarations, and ProcessesA module speci�ed in the timed HSE language is composed of two parts: a set of signaldeclarations and a set of concurrent processes executing in parallel. The signal declarationsare used to specify attributes for each signal wire. Each declaration consists of a type(either input or output), a signal name, an initial value (either true or false), and delaysassociated with transitions on the signal. A delay is given in the form: hlr; ur; lf ; ufi wherelr and ur are the lower and upper bounds on a rising transition and lf and uf are thelower and upper bounds on a falling transition. If the fall times are not speci�ed, they areassumed to be equal to the rise times. The lower bounds are nonnegative integers, and theupper bounds are an integer greater than or equal to the lower bound, or 1. Since realvalues can be expressed as rationals within any required accuracy, restricting the boundsto be integers does not limit the expressiveness. Since there are only a �nite number oftiming parameters, if any are rational, we can multiply all of them by the least commondenominator. The processes are used to specify the behavior of a module. Each processconsists of a set of commands as described in the following two subsections. The parts ofthe grammar just described are shown in Figure 1.

CHAPTER 2. TIMED SPECIFICATIONS 12hmodulei ::= module ID;hsigdeclihprocessi endmodulehsigdecli ::= hsigdeclihsigdecli j type ID = finitial, delay g;hprocessi ::= hprocessihprocessi j process ID;hcmdi endprocessFigure 1: Modules, signal declarations, and processes.2.1.2 Basic Commands and Their CompositionEach basic command is an event. An event speci�es when a signal transition can occur.There are two transitions associated with each signal s in a speci�cation, namely, s " where" denotes that the signal s is changing from a low to high value, and s # where # denotesthat the signal s is changing from a high to low value. The language also includes a skipevent which does nothing and terminates immediately. Commands can be executed eitherin sequence (denoted C1 ; C2) or in parallel (denoted C1 k C2). The constructs justdescribed are shown in Figure 2.hcmdi ::= hcmdi; hcmdi j hcmdikhcmdi j heventiheventi ::= ID " j ID # j skipFigure 2: Basic commands and their composition.2.1.3 Guarded CommandsIn addition to sequential and parallel composition, commands within a process can also becomposed in con
ict to specify a choice of behavior made by the environment. Con
ict, orchoice, is represented with a set of guarded commands (denoted [G1 ! C1 j : : : j Gn !Cn]). The guard Gi of a guarded command is a boolean expression over a set of events. Theevents in this expression can be composed conjunctively (denoted e1 ^ : : :^ en) in which theexpression evaluates to true when the process has seen all the events in the set. Mutuallyexclusive events can also be composed disjunctively (denoted e1 _ : : : _ en) in which theexpression evaluates to true when the process has seen exactly one event in the set. Theexpression may also include a combination of conjunctive and disjunctive clauses. Finally,

CHAPTER 2. TIMED SPECIFICATIONS 13an expression may simply be the skip event which evaluates to true immediately. Theexpressions in our language di�er from those used by Martin [44] in that ours are based onpredicates on events rather than on predicates on signal values. This change in semanticsis made because the representation used by our timing analysis algorithm is event-based.When a guarded command is encountered, execution stalls until one of the guards Gievaluates to true, after which the commands Ci associated with the guard that is satis�edare executed. If multiple guards evaluate to true, then one guard is nondeterministicallychosen. Our synthesis procedure allows input choice but does not allow output choice,such as arbitration, so a speci�cation must guarantee that either all expressions in a setof guarded commands are mutually exclusive, or that the �rst events in each set of non-mutually exclusive guarded commands is on a signal of type input. If an arbiter is neededin the design, it can be added as a special environment process.A guarded command may also loop (denoted Gi ! Ci; �) [15]. If a guarded commandthat loops is selected, then after the set of commands is executed, control is returned to thebeginning of the guarded command. This looping continues until a guarded command thatdoes not loop is selected.The timed HSE language makes use of abbreviations for two commonly used guardedcommand constructs [15]. The �rst is that a guarded command of the form [G ! skip]may be written as [G] which is called a wait. A wait simply speci�es that the processmust stall until the expression associated with the guard evaluates to true. The secondabbreviation is that a guarded command of the form [skip! C; �] may be written as �[C]which represents an in�nite repetition of a set of commands. The parts of the grammarassociated with guarded commands are shown in Figure 3.hcmdi ::= [hgdcmdseti] j [hexpri] j � [hcmdi]hgdcmdseti ::= hgdcmdsetijhgdcmdseti j hgdcmdihgdcmdi ::= hexpri ! hcmdi j hexpri ! hcmdi; �hexpri ::= hexpri ^ hexpri j hexpri _ hexpri j heventiFigure 3: Guarded commands.

CHAPTER 2. TIMED SPECIFICATIONS 142.1.4 ExampleAs an example, consider the speci�cation of a port selector (SEL) which is given in CSP inFigure 4(a). The CSP language includes all the constructs from the timed HSE language,as well as additional types of events to communicate on ports. A port is one side of acommunication channel between two concurrent processes. A communication on a port isused for synchronization of the processes, and it may also be used to transmit data betweenthem. Ports can be of either passive or active type. A port is passive if communications onthe port are initiated by the environment process, and a port is active if communicationsare initiated by the process being designed. In the SEL, the xfer port is passive and all theother ports are active.
xferi

selo

datao

out1o

out2o

out1i

out2i

datai

sel1i sel2i

xfero

*[[xfer → (data || sel?(sel1, sel2));
[sel1 → out1; xfer
| sel2 → out2; xfer

]]

(a) (b)

SELFigure 4: (a) CSP speci�cation and (b) block diagram for a port selector (SEL).The basic operation of the SEL is as follows. First, the SEL waits until it gets arequest for a data transfer (i.e., xfer), then it concurrently issues requests for the data to betransferred (i.e., data) and for the selection of an output port (i.e., sel?(sel1,sel2)). Afterthe SEL receives the data and the port selection (i.e., sel1 or sel2), it initiates the transferof the data onto the selected output port (i.e., out1 or out2) and then acknowledges thecompletion of the data transfer (i.e., xfer).A timed HSE speci�cation is derived from a CSP speci�cation by translating all thecommunications on ports to their corresponding signal transitions that implement the com-munications. These communications can be implemented in many ways. The most commonmethods use either a two-phase handshaking or four-phase handshaking protocol. In bothmethods, a simple synchronization communication is implemented with two wires, one forrequests and one for acknowledgments. In the two-phase method, both the rising and fallingtransitions represent requests and acknowledgments. It is called two-phase because a cycleinvolves two transitions, one request and one acknowledgment. In the four-phase method,

CHAPTER 2. TIMED SPECIFICATIONS 15only one type of transition (either the rising or the falling transition) represents a requestor acknowledgment, and before another request or acknowledgment the corresponding wiremust return to its original value. Thus, this protocol requires four transitions in a cycle.While either protocol could be speci�ed and implemented, we use the four-phase protocolbecause it typically results in simpler logic.Returning to the SEL, the signal wires that implement the communications in the CSPspeci�cation are shown in the block diagram in Figure 4(b). For example, the xfer commu-nication is implemented with two wires, one request wire xferi and one acknowledge wirexfero. The port selection sel is implemented with three wires, one request wire selo and twodata wires sel1i and sel2i.The �rst step in translating the CSP speci�cation to a timed HSE speci�cation is tocreate declarations for each signal wire that is needed to implement the communicationsin the CSP speci�cation. Finding the delays, or timing constraints, to associate with thetransitions on these signal wires is not a trivial task. The timing constraints for input signaltransitions can usually be determined from interface speci�cations or datapath delay esti-mates. The timing constraints for output signal transitions, however, presents a \chickenand egg problem", since the timing constraints cannot be known until the circuit is syn-thesized, but the circuit cannot be synthesized without giving the timing constraints. Thetraditional delay-insensitive or speed-independent approaches assume no timing informa-tion. In other words, they assume that delays can be anywhere from 0 to in�nity. Thisconservative assumption can often lead to unnecessarily complex circuit implementations.It is quite reasonable, however, to expect an automatic analysis of the given gate libraryto produce a safe estimate of the maximum delay for the gates in the library to be used,and by making some assumptions about the complexity of the synthesized logic, this canbe used to set the upper bound of the timing constraint for each output signal transition.The lower bound of the timing constraint should usually be set to a very low value sinceoptimizations could potentially reduce the gate to nothing more than a wire. After the cir-cuit is generated, it must be back-annotated with timing information from the gate libraryand veri�ed to be correct which is the subject of Chapter 7. If the circuit fails veri�cation,it must be resynthesized with more conservative timing constraints (larger upper boundsand/or smaller lower bounds). In order to avoid resynthesis, conservative values shouldbe used for timing constraints on output signal transitions. Of course, more aggressiveestimates of the gate delays can be used leading potentially to better implementations, but

CHAPTER 2. TIMED SPECIFICATIONS 16may require more iterations of the synthesis procedure. In the design of interface circuitsand other controllers, inputs often are from o�-chip or from a datapath. In these cases, thelower bound of the timing constraints on input signal transitions is large compared withthe upper bound of the timing constraints on output signal transitions. Therefore, a con-servative estimate for gate delays may not signi�cantly a�ect the complexity of the timedcircuit implementation.The next step is to translate each communication on a port to its corresponding signaltransitions. A communication on a passive port such as the xfer port is expanded as follows:[xferi "]; xfero "; [xferi #]; xfero #The placement of the �rst wait is dictated by the probe on the xfer port (i.e., xfer). Theprobe is used to test if there is a pending communication on a passive port. The restof the communication on the passive xfer port are expanded where the communication iscompleted (i.e., xfer).A communication on an active port such as the data port is expanded as follows:datao "; [datai "]; datao #; [datai #]As an optimization, however, an active port is usually implemented using a lazy-activeprotocol [44] which is expanded as follows:[datai #]; datao "; [datai "]; datao #In this protocol, the reset of the four-phase handshake (i.e., the falling transition of theinput wire) does not delay the execution until a new request on the active port is necessary.Note that since the datai wire is initially low, the �rst wait is vacuous. A vacuous eventis one which is ignored in the initial cycle because it is the �rst event on that signal, andthe event would set the value of the signal to its initial value. The two output ports out1and out2 are similarly expanded. The sel port is slightly di�erent in that there are twoinput wires associated with it that carry the data of which port is to be selected. Therefore,the request on this port must wait on either the falling transition of the sel1i wire or thesel2i wire depending on what port was used in the previous cycle. After a port selectionis requested by rising the output wire selo, one of the two input wires sel1i or sel2i is sethigh by the environment. Part of the initial timed HSE speci�cation for the SEL module isshown in Figure 5 including the signal declarations that implement the sel port, the control

CHAPTER 2. TIMED SPECIFICATIONS 17process (selctrl) being designed, and the environment process (sel) which makes the choiceof which output port to use.module SEL;input sel1i = ffalse; h40; 260; 2; 40ig;input sel2i = ffalse; h40; 260; 2; 40ig;output selo = ffalse; h0; 20ig;etc.process selctrl;� [[xferi "! (([datai #]; datao ") k ([sel1i # _ sel2i #]; selo ")); [datai "];[sel1i " ! (selo # k datao #); [out1i #]; out1o "; [out1i "]; out1o #; xfero "; [xferi #]; xfero #j sel2i " ! (selo # k datao #); [out2i #]; out2o "; [out2i "]; out2o #; xfero "; [xferi #]; xfero #]]]endprocessprocess sel;� [[selo "]; [skip ! sel1i "; [selo #]; sel1i #j skip ! sel2i "; [selo #]; sel2i #]]endprocessetc.endmodule Figure 5: Part of the timed HSE speci�cation for the SEL.The CSP speci�cation dictates the ordering of communications on the ports, but manydi�erent timed HSE speci�cations using the corresponding signal wires could implement thecommunications. After expanding these communications, the resulting signal transitionscan often be reshu�ed to optimize the implementation [44]. In particular, there is typicallya great deal of
exibility in the placement of the initiation of the reset of each four-phasehandshake (i.e., the falling transition of the output signal wire for active ports). One possiblereshu�ing of these transitions is shown in Figure 6.process selctrl;� [[xferi "! (([datai #]; datao ") k ([sel1i # _ sel2i #]; selo ")); [datai "];[sel1i " ^ out1i # ! out1o "; selo #; [out1i "]; (xfero " k datao #); out1o #; [xferi #]; xfero #j sel2i " ^ out2i # ! out2o "; selo #; [out2i "]; (xfero " k datao #); out2o #; [xferi #]; xfero #]]]endprocess Figure 6: Reshu�ing of the selctrl process.

CHAPTER 2. TIMED SPECIFICATIONS 182.2 Timed Event-Rule StructuresIn order to de�ne the behaviors speci�ed by a module in the timed HSE speci�cation lan-guage, we introduce timed event-rule (ER) structures, a variant of Winskel's event structureswith timing. Event structures were introduced by Winskel [77], and timing has been addedto them in several ways. Subrahmanyam added timing to event structures using temporalassertions [66]. Burns introduced timing in a deterministic version, the event-rule (ER)system, in which causality is represented using a set of rules, and a single delay value,rather than a bound, is associated with each rule [16]. In this section, we introduce timedER structures which extend ER systems with bounded timing constraints and add con
ictfrom event structures to model nondeterministic behavior (namely, environmental choice).Timed ER structures are composed of a set of atomic actions (A), a set of events (E), aset of rules (R), and a symmetric con
ict relation (#). In timed circuits, the set of atomicactions A is the set of all possible signal transitions. The occurrence of an action is anevent, and it is denoted (a; i) where a is the action and i is an occurrence index for theaction. The �rst instance of this action has i = 0, and i increments with each subsequentinstance. We partition the event set E into a set of input events (I) and a set of outputevents (O).The rule set R is used to represent a causal dependence between two events. Each ruleof the form he; f; l; ui is composed of an enabling event e, an enabled event f , and a boundedtiming constraint hl; ui. Informally, a rule states that the enabled event cannot occur untilthe enabling event has occurred. Ignoring con
ict for the moment, if two rules enable thesame event then that event cannot occur until both enabling events have occurred. Thiscausality requirement is termed conjunctive. The bounded timing constraint places a lowerand upper bound on the timing of a rule. A rule is said to be satis�ed if the amount of timewhich has passed since the enabling event has exceeded the lower bound of the rule. A ruleis said to be expired if the amount of time which has passed since the enabling event hasexceeded the upper bound of the rule. Again ignoring con
ict, an event cannot occur untilall rules enabling it are satis�ed. An event must always occur before every rule enablingit has expired. Since an event may be enabled by multiple rules, it is possible that thedi�erence in time between the enabled event and some enabling events exceed the upperbound of their timing constraints, but not for all enabling events. These timing constraintsare the same as the max constraints described in [46] and the type 2 arcs described in [73].

CHAPTER 2. TIMED SPECIFICATIONS 19The con
ict relation is added to model disjunctive behavior and choice. When twoevents e and e0 are in con
ict (denoted e#e0), this speci�es that either e can occur or e0 canoccur, but not both. Taking the con
ict relation into account, if two rules have the sameenabled event and con
icting enabling events, then only one of the two mutually exclusiveenabling events needs to occur to cause the enabled event. This models a form of disjunctivecausality. Inherently disjunctive behavior, or true OR causality, cannot currently modeled,but we are investigating extending work by Lee in [40] to address this. Choice is modeledwhen two rules have the same enabling event and con
icting enabled events. In this case,only one of the enabled events can occur.The formal de�nition of our timed ER structure is given below in which E = I [O andN = f1; 2; 3; : : :g:De�nition 2.2.1 (Timed ER Structure) A timed ER structure is S = hA; I; O;R;#i where1. A is the set of atomic actions;2. I � A�N is the set of input events;3. O � A� N is the set of output events;4. R � E � E � N � (N [f1g) is the set of rules;5. # � E � E is the con
ict relation.Events are labeled using the function L : E ! A.2.3 Timed Con�gurationsFor a timed ER structure, we de�ne the allowed behaviors speci�ed by the structure usingtimed con�gurations. Winskel de�ned the allowed behaviors of event structures as subsetsof events, or con�gurations [77]. In order to add timing, we introduce timed con�gurationsin which each event is now paired with the time of its occurrence.The �rst requirement for a subset of events to be a con�guration is that it must becon
ict-free. In other words, if two events are in con
ict, it is not allowed for both of themto occur in a con�guration. Winskel de�ned Con to be the set of �nite con
ict-free subsetsof E, i.e. Con � 2E, de�ned as follows:Con = fX j (X � E)^ (8e; e0 2 X : :(e#e0))g:

CHAPTER 2. TIMED SPECIFICATIONS 20In order to add timing, we de�ne TCon to be the set of con
ict-free subsets of events in whicheach event is paired with the real-valued time that the event occurred (i.e., TCon � 2E�<).To obtain the Con set from TCon, we de�ne the function untime : TCon ! Con in theobvious way.The second requirement is that all events in the subset must be time-secured. Informally,this means that for each event in the set, all the events needed to enable the event are alsoin the set. To de�ne this formally, we must �rst de�ne when an event is enabled. Theuntimed enabling relation (`� Con�E) is de�ned as follows:X ` f , [(he; f; l; ui 2 R)) ((e 2 X)_ (9e0 2 X : (e#e0)^ he0; f; l0; u0i 2 R))]:Intuitively, this says given that the events in the set X have occurred that the event fis untimed-enabled. This is true when a set of non-con
icting enabling events in rules inwhich f is the enabled event are in the set X . To incorporate timing, we now de�ne thetimed enabling relation (`t� TCon�<� E) as follows:Z `t f , [(untime(Z) ` f) ^ (8(e; t0) 2 Z : he; f; l; ui 2 R) t � t0 + l)]:Intuitively, this says that given that the set of event-time pairs in Z have occurred andtime has advanced to time t, the event f is timed-enabled. This is true when f is untimed-enabled, and at time t the lower bounds of all timing constraints have been satis�ed. Withthis relation, we can now de�ne time-secured � TCon� E as follows:time-secured(Z; e) , [9(e0; t0); : : : ; (en; tn) 2 Z : en = e ^8i � n : f(e0; t0); : : : ; (ei�1; ti�1)g `ti ei]:The third requirement for a subset of events to be a con�guration is that it is non-expired. This means that all events must occur before they are expired. An event is expiredwhen for all the rules enabling it, the time since the enabling event has exceeded the upperbound of the timing constraint. We de�ne a relation expired � TCon� E �< as follows:expired(Z; f; t) , [(Z `t f) ^ (8(e0; t0) 2 Z : he0; f; l; ui 2 R) t > t0 + u)]:Using this relation, we say a timed con�guration Z is non-expired if for all events eitherthe event has occurred and was not expired when it occurred, or it has not occurred and isnot expired at the latest time of any event occurrence in the con�guration. We de�ne the

CHAPTER 2. TIMED SPECIFICATIONS 21relation non-expired � TCon�E as follows:non-expired(Z; f) , [(9t : (f; t) 2 Z ^ :expired(Z; f; t))_ :expired(Z; f; max(e;t)2Zftg)]:Now, we can de�ne all the timed con�gurations speci�ed by a timed ER structure.De�nition 2.3.1 (Timed con�gurations) For a timed ER structure S = hA; I; O;R;#i, atimed con�guration of S is a subset of event-time pairs Z � E �< which is:1. con
ict-free: Z 2 TCon,2. time-secured: 8e 2 untime(Z) : time-secured(Z; e), and3. non-expired: 8f 2 E : non-expired(Z; f).The set of all con�gurations is C(S).2.4 Interpreting the Speci�cation LanguageIn order to interpret the behavior of a module described in the timed HSE speci�cationlanguage, we translate it to a timed ER structure. The procedure that we use is similar tothe one proposed by Subrahmanyam [66]. The �rst step uses the declarations to initializesome functions to return the attributes declared for each signal. Next, each process isiteratively decomposed until it is made up of only events and simple waits that are composedon the operators specifying sequencing, concurrency, and choice. A simple wait is one whichis composed of an expression that includes only a single event. In order to translate thedecomposed speci�cation to a timed ER structure, we need a function to compose two timedER structures on each of the operations, and a function to rename a timed ER structure toresolve event name clashes before composition.This section �rst describes a method to interpret non-repetitive processes which is thenextended to interpret repetitive processes. The interpretation procedures given in this sectionare quite detailed for completeness, and they may be skimmed or skipped on �rst readingwithout loss of continuity.2.4.1 DeclarationsThe declarations are used to assign attributes to actions. These attributes are accessiblethrough functions of the form f : A! attr. For each declaration of the form:type s = finitial; hlr; ur; lf ; ufig; ;

CHAPTER 2. TIMED SPECIFICATIONS 22we make the following assignments to initialize the functions type, init, and delay:type(s ") = type(s #) = typeinit(s ") = init(s #) = initialdelay(s ") = hlr; uridelay(s #) = hlf ; ufi:2.4.2 Composition of Timed Event-Rule StructuresEach process is made up of a set of events and waits that are composed on operatorsspecifying sequencing (;), concurrency (k), and choice (j). Therefore, we need to de�ne ameans of composing two timed ER structures. To facilitate this composition, two subsetsof the event set are added temporarily to the timed ER structure: �rst and last. Intuitively,the �rst set indicates which events are the �rst to occur in a timed ER structure, and thelast set indicates which events are the last to occur. The composition of two timed ERstructures S0 = hA0; I0; O0; R0;#0; �rst0; last0i and S1 = hA1; I1; O1; R1;#1; �rst1; last1i(i.e., S0 op S1 where op 2 f; ; k; jg) is de�ned as follows:A = A0 [A1I = I0 [I1 � (O0 [O1)O = O0 [O1R = R0 [R1 [fhe; f; delay(L(f))i j e 2 last0 ^ f 2 �rst1 ^ op = ; g# = #0 [#1 [f(e; e0) j (e 2 O0 ^ e0 2 O1 ^ op = j)g�rst = if (�rst0 = ; _ op = k _ op = j) then �rst0 [�rst1 else �rst0last = if (�rst1 = ; _ last1 = ; _ op = k _ op = j) then last0 [last1 else last1The sets of actions and output events are simply merged. The set of input events arealso merged, but any events which are also output events are removed to keep the sets ofinput and output events disjoint. If there are no input events (i.e., I = ;), we say thestructure is closed. In order to perform synthesis, we require the structure obtained fromthe complete speci�cation to be closed. The rule sets are similarly combined, but in thecase in which op = ; new rules are added from the last events in S0 (i.e., the events inthe set last0) to the �rst events in S1 (i.e., the events in the set �rst1). The con
ict setsare also merged, and if op = j then every output event in S0 is set to con
ict with every

CHAPTER 2. TIMED SPECIFICATIONS 23output event in S1. Finally, new �rst and last sets are created. If the structures are beingcomposed in parallel or in con
ict, the sets are created by simply taking the union of thesets from each structure. If the structures are being composed in sequence, then in mostcases the �rst set equals �rst0, and the last set equals last1. The exception is if �rst0 isempty then the �rst set equals �rst1, and if either �rst1 or last1 is empty than the last setis the union of the two last sets from the two structures.2.4.3 Renaming of Timed Event-Rule StructuresWhen composing structures sequentially or in con
ict, multiple occurrences of events withthe same name are not allowed. Therefore, before doing the composition, we �rst resolveany name clashes using the function rename which takes two structures and returns thesecond structure with event names changed such that they do not clash with event namesin the �rst structure. The function rename(S0; S1) is de�ned as follows:A = A1I = frename(E0; e) j e 2 I1gO = frename(E0; e) j e 2 O1gR = fhrename(E0; e); rename(E0; f); l; ui j he; f; l; ui 2 R1g# = f(rename(E0; e); rename(E0; e0)) j e#e0g�rst = frename(E0; e) j e 2 �rst1glast = frename(E0; e) j e 2 last1gThe function rename is overloaded above to take a set of events E and a single event (a; i),and it renames (a; i) if there is a name clash with an event in the set E as follows:rename(E; (a; i)) = if (8k(a; k) 62 E) then (a; i) else (a; i+ j)where (a; j � 1) 2 E ^ (a; j) 62 E:2.4.4 Interpretation of a Non-Repetitive ProcessA non-repetitive process is one which does not contain any looping constructs (i.e., guardedcommands of the form G ! C; � or the in�nite loop construct �[C]). These constructsare addressed in the next subsection. To interpret a non-repetitive process, we de�ne thefunction TERS which takes a timed HSE speci�cation and returns a timed ER structure

CHAPTER 2. TIMED SPECIFICATIONS 24of the form: S = hA; I; O;R;#;�rst; lasti. This function iteratively decomposes the timedHSE speci�cation into events and simple waits that are composed on the operators, and itis de�ned as follows:TERS(p; q) = TERS(p); rename(TERS(p);TERS(q))TERS(pkq) = TERS(p)kTERS(q)TERS([p j q]) = TERS([p]) j rename(TERS([p]);TERS([q]))TERS([p! q]) = TERS([p]); rename(TERS([p]);TERS(q))TERS([p_ q]) = TERS([p]) j rename(TERS([p]);TERS([q]))TERS([p^ q]) = TERS([p])kTERS([q])TERS([a]) = hfag; f(a; 1)g; ;; ;; ;; ;; f(a; 1)giTERS(a) = hfag; ;; f(a; 1)g; ;; ;; f(a; 1)g; f(a; 1)giTERS([skip]) = h;; ;; ;; ;; ;; ;; ;iTERS(skip) = h;; ;; ;; ;; ;; ;; ;iwhere p and q are segments of a process, and a is an action.The �rst rule simply states that the structure for two sets of commands p and q composedsequentially is obtained by �nding the structure for p and q, renaming the events in thestructure for q, if necessary, and composing these structures using the sequencing operation(;). When composing p and q in parallel, a structure is again �rst found for each, butthey are composed using the parallel operation (k) and renaming is not done. In orderto generate the structure for a pair of guarded commands p and q, the structure for eachguarded command [p] and [q] is found individually, the events in the structure for [q] arerenamed, if necessary, and the resulting structures are composed using the con
ict operation(j). For an individual guarded command ([p! q]), a structure is obtained for a wait [p], andit is composed sequentially with a renamed version of the structure for q. The next two rulesare for evaluating expressions in waits. The �rst says that a disjunct in a wait is de�ned tobe semantically equivalent to two waits in con
ict. The second says a conjunct in a waitis de�ned to be semantically equivalent to two waits in parallel. The last four translateevents and simple waits into timed ER structures. First, if the input to the function is asimple wait on any event other than skip, the function returns a structure with a singleaction, a single input event, and the last set initialized to include the input event. Next, ifthe input to the function is an event other than skip, the function returns a structure with

CHAPTER 2. TIMED SPECIFICATIONS 25a single action, a single output event, and both the �rst and last sets initialized to includethe output event. Finally, if the input to the function is a simple wait on skip or the skipevent, the function returns an empty structure.2.4.5 Interpretation of a Repetitive ProcessIf a process is repetitive, then the timed ER structure describing its behavior is in�nite. Dueto its repetitive nature, however, this in�nite behavior can be described with a �nite modelby adding an additional set of rules R0 and an additional set of con
icts #0. A loop set isalso added temporarily to keep track of the last events before control loops back. When atimed ER structure is created, these sets are all initialized to the empty set. The renamefunction is modi�ed in the obvious way to accommodate these new sets. To generate thesesets, the composition operator is modi�ed as follows:R0 = R00 [R01 [fhe; f; delay(L(f))i j e 2 loop1 ^ f 2 �rst1 ^ op = ; g#0 = #00 [#01 [f(e; e0) j (e 2 loop1 ^ e0 2 last0 ^ op = ;)gloop = if (op = k _ op = j) then loop0 [loop1 else ;:The R0 set is found by �rst taking the union of the corresponding sets from the structuresthat are being composed, and then when op = ;, new rules are added from events in theloop1 set to the �rst1 set which creates a loop in the structure. Also, if op = ; then theevents in last0 are set to con
ict with the events in loop1. As for the loop set, the eventsin the loop sets from the structures being composed in parallel or in con
ict are simplymerged and initialized to the empty set when composed in sequence. Finally, there is onemore special case of composition in which S0 is being composed in sequence with `�' (orequivalently, in the case of the `�[]' construct). In this case, the structure S0 is returnedwith the loop set equal to last0 and the last set equal to the empty set.With a timed ER structure of the form S0 = hA0; I0; O0; R0;#0; R00;#00i, we can induc-tively de�ne the in�nite behavior speci�ed by a repetitive process as follows:Si = loop(S0; S0krename(S0; Si�1))where loop(S0; S1) is de�ned as follows:R = R1 [fhe; rename(E0; f); l; ui j he; f; l; ui 2 R00g# = #1 [f(e; rename(E0; e0)) j e#00e0g:

CHAPTER 2. TIMED SPECIFICATIONS 262.4.6 Vacuous EventsIn the previous sections, we ignored the possibility that some events may be vacuous in the�rst cycle, such as the �rst wait in the lazy-active protocol described earlier. We utilizethe additional sets described in the previous section to model vacuous events. In order todetect that an event is vacuous, a bitvector v is used to represent the possibility of eachsignal having a vacuous event on it. Before beginning the interpretation of each process,all elements in v are initialized to true, and as each action appears non-vacuously, theappropriate element is set to false. To determine if an action is vacuous, we de�ne thefollowing function:vacuous(v; a) = if v(a) and ((init(a) and a = s+) or (:init(a) and a = s�))then true else false:This information is used to modify the composition function as follows:R = R0 [R1 [fhe; f; delay(L(f))i j e 2 last0 ^ f 2 �rst1 ^ op = ;^:vacuous(v; e)gR0 = R00 [R01 [fhe; f; delay(L(f))i j e 2 loop1 ^ f 2 �rst1 ^ op = ; g[fhe; f; delay(L(f))i j e 2 last0 ^ f 2 �rst1 ^ op = ;^vacuous(v; e)gThis puts all rules with vacuous enabling events into the R0 set, so they are enabling eventsin the next cycle.2.4.7 Interpretation of a ModuleIn order to obtain the timed ER structure for a complete module, it is now simply a matterof composing all the individual processes in parallel, i.e.,TERS(P Q) = TERS(P)kTERS(Q)where P and Q are processes.

CHAPTER 2. TIMED SPECIFICATIONS 272.4.8 ExampleThe structure S0 = hA0; I0; O0; R0;#0; R00;#00i that is obtained for the environmental se-lection process sel from the SEL is shown below:A0 = fselo "; selo #; sel1i "; sel1i #; sel2i "; sel2i #gI0 = f(selo "; 1); (selo #; 1); (selo #; 2)gO0 = f(sel1i "; 1); (sel1i #; 1); (sel2i "; 1); (sel2i #; 1)gR0 = fh(selo "; 1); (sel1i "; 1); 40; 260i; h(selo "; 1); (sel2i "; 1); 40; 260i;h(sel1i "; 1); (sel1i #; 1); 2; 40i; h(sel2i "; 1); (sel2i #; 1); 2; 40i;h(selo #; 1); (sel1i #; 1); 2; 40i; h(selo #; 2); (sel2i #; 1); 2; 40ig#0 = fh(sel1i "; 1); (sel2i "; 1)i; h(sel1i "; 1); (sel2i #; 1)i;h(sel1i #; 1); (sel2i "; 1)i; h(sel1i #; 1); (sel2i #; 1)igR00 = R00 + fh(sel1i #; 1); (sel1i "; 1); 40; 260i; h(sel1i #; 1); (sel2i "; 1); 40; 260i;h(sel2i #; 1); (sel1i "; 1); 40; 260i; h(sel2i #; 1); (sel2i "; 1); 40; 260ig#00 = ;:

CHAPTER 2. TIMED SPECIFICATIONS 28AppendixThe formal syntax rules for our timed HSE language are given using BNF notation inFigure 7. As with the abstract grammar, the left-hand and right-hand side of a syntaxrule is separated using `::=', and alternatives are separated with `j'. There are, however,some additional constructs such as the bracket pair [: : :] which means optional, the bracepair f : : :g which means repeat zero or more times, and the selection construct `(: : : j : : :)'which is used to indicate a choice of options. Again, keywords are boldface and syntaxrules are enclosed in angle brackets `h: : :i'. ID represents an identi�er which is a string ofalpha-numeric characters starting with a letter. INT represents an integer or the keywordinf or in�nity. Finally, the symbols used in the language are enclosed in single quotes. InFigure 8, the SEL is given as it would appear as input to the CAD tool ATACS.There are two additional constructs that are added here which are used to facilitate thespeci�cation of timing parameters. The �rst is delay macros which can be de�ned and thenused in signal declarations later. The second construct is a delay override which is speci�edusing a delay before an event to override the default delay given in the declaration for thisparticular occurrence of the event.Within ATACS, the command compile h�lenamei compiles a timed HSE speci�cationgiven in the �le named h�lenamei.hse into a timed ER structure which is stored into a �lenamed h�lenamei.er. ATACS can also accept a timed ER structure as input directly whichis loaded with the command loader h�lenamei. The format of the �le is shown in Figure 9.First, comments begin with the `#' character which causes the program to ignore the restof the line. The header of the �le gives the numbers of each type of entry that follows.This includes the total number of events, the number which are input events, the numberof rules, and the number of con
icts. The next entry `.s' is used to specify the initial statewhich is given as a bitvector of 0's and 1's with a length equal to the number of signals inthe speci�cation. The �rst event is always the reset event, the next set of events are thoseon inputs, and the last set of events are the ones on outputs. Each event other than reset iscomposed of an action and an occurrence number separated by a `/'. Each rule is composedof an enabling event, enabled event, indication of which rule set it is in (`1' if it is in R0,`0' if it is in R), a lower bound, and an upper bound of the timing constraint on the rule.Finally, each con
ict is a pair of events. The timed ER structure for the sel process fromthe SEL is shown in Figure 10.

CHAPTER 2. TIMED SPECIFICATIONS 29
hmodulei ::= module ID `;'fhdeclsigfhprocessesig endmodulehdeclsi ::= hdeclifhdeclighdecli ::= hdelaydecli j hsigdeclihdelaydecli ::= delay ID ` = 'hdelayi`; 'hsigdecli ::= (input j output) ID [= `f'hsigspeci`g']`; 'hsigspeci ::= (true j false) j hdelayi j (true j false)`; 'hdelayihdelayi ::= ` < ' INT, INT [`;' INT, INT] ` > ' j IDhprocessesi ::= hprocessifhprocessighprocessi ::= process ID `;'fhcmdsig endprocesshcmdsi ::= hcmdif`; 'hcmdighcmdi ::= [hdelayi]heventi j hparastructi j hgdcmdstructiheventi ::= ID + j ID � j skiphparastructi ::= `('hparalleli`)'hparalleli ::= hcmdsif`k'hcmdsighgdcmdstructi ::= `['hgdcmdseti`]' j ` � '`['hcmdsi`]' j `['hexpri`]'hgdcmdseti ::= hgdcmdif`j'hgdcmdighgdcmdi ::= hexpri`� > 'hcmdsi[`; '̀ � ']hexpri ::= hconjunctif`j'hconjunctighconjuncti ::= hliteralif`&'hliteralighliterali ::= heventi j `('hexpri`)'Figure 7: Complete BNF description for the timed HSE speci�cation language.

CHAPTER 2. TIMED SPECIFICATIONS 30module SEL;delay gatedelay =< 0; 20 >;delay seldelay =< 40; 260; 2; 40>;etc.input sel1i = ffalse; seldelayg;input sel2i = ffalse; seldelayg;output selo = ffalse; gatedelayg;etc.process selctrl;� [[xferi + � > (([datai�]; datao+) jj ([sel1i � j sel2i�]; selo+)); [datai+];[sel1i + & out1i� � > out1o+; selo�; [out1i+]; (xfero + jj datao�); out1o�;[xferi�]; xfero�j sel2i + & out2i� � > out2o + selo�; [out2i+]; (xfero + jj datao�); out2o�;[xferi�]; xfero�]]]endprocessprocess sel;� [[selo+]; [skip � > sel1i+; [selo�]; sel1i �j skip � > sel2i+; [selo�]; sel2i�]]endprocessetc.endmodule Figure 8: Part of the timed HSE speci�cation for the SEL..e INT # Number of events.i INT # Number of input events.r INT # Number of rules.c INT # Number of con
icts.s hinitial stateireset# List of input eventsfID` + 'j`� ')`='INTg# List of output eventsfID(` + 'j`� ')`='INTg# List of rulesID(` + 'j`� ')`='INT ID(` + 'j`� ')`='INT INT INT INT# List of con
ictsID(` + 'j`� ')`='INT ID(` + 'j`� ')`='INTFigure 9: Format for a timed ER structure.

CHAPTER 2. TIMED SPECIFICATIONS 31
.e 9.i 4.r 10.c 4.s 000reset# List of input eventssel1i+/1 sel1i-/1sel2i+/1 sel2i-/1# List of output eventsselo+/1 selo-/1selo+/2 selo-/2# List of rules in Rselo+/1 sel1i+/1 0 40 260selo+/1 sel2i+/1 0 40 260sel1i+/1 sel1i-/1 0 2 40sel2i+/1 sel2i-/1 0 2 40selo-/1 sel1i-/1 0 2 40selo-/2 sel2i-/1 0 2 40# List of rules in R0sel1i-/1 sel1i+/1 1 40 260sel1i-/1 sel2i+/1 1 40 260sel2i-/1 sel1i+/1 1 40 260sel2i-/1 sel2i+/1 1 40 260# List of con
ictssel1i+/1 sel2i+/1sel1i+/1 sel2i-/1sel1i-/1 sel2i+/1sel1i-/1 sel2i-/1Figure 10: Timed ER structure for the sel process from the SEL.

Chapter 3Timing AnalysisIn a home it is the site that matters;in quality of mind it is depth that matters;in an ally it is benevolence that matters;in speech it is good faith that matters;in government it is order that matters;in a�airs it is ability that matters;in action it is timeliness that matters.|Lao ZiThe basic idea behind synthesis and veri�cation methods that use explicit state space ex-ploration is that, if the reachable state space is �nite or has a �nite representation, only a�nite subset of the possible behaviors needs to be considered to compute the complete setof reachable states. In our timed speci�cations, the occurrence times associated with eventscan take on real values, so there are an in�nite number of timed states in the system. Inorder to perform explicit state space exploration, it is necessary to use a timing analysisalgorithm to construct a �nite representation of this in�nite state space.In this chapter, we describe two timing analysis algorithms that we developed and ap-plied to timed state space exploration. The �rst technique is an e�cient, heuristic algorithmwhich determines the minimum and maximum time di�erence between any two events in acon
ict-free timed ER structure and uses this information to guide state space exploration.Since only con
ict-free timed ER structures can be analyzed, this approach is limited todeterministic speci�cations. Therefore, we also introduce another technique, partial ordertiming, which makes use of geometric region representations of the timed state space and32

CHAPTER 3. TIMING ANALYSIS 33partial order information to guide their creation. Using this procedure, any timed ER struc-ture can be analyzed, but in order to do so, it must �rst be transformed into an orbitalnet representation that satis�es certain properties. This transformation procedure is alsodescribed.3.1 Constraint graphsAs described in the previous chapter, an in�nite timed ER structure can be speci�ed usinga �nite representation of the form S0 = hA0; I0; O0; R0;#0; R00;#00i. If this structure iscon
ict-free (i.e., the con
ict sets #0 and #00 are empty), it can be fully described witha cyclic constraint graph which is a weighted marked graph in which the vertices are theevents, the arcs are the rules, and the weights are the bounded timing constraints. If a ruleis in R00, it is initially marked which means that a token is placed on the arc correspondingto the rule to indicate that the rule is initially untimed enabled. Each rule of the formhe; f; l; ui is represented in the graph with an arc connecting the enabling event e to theenabled event f . The arc is weighted with the bounded timing constraint hl; ui. In otherwords, each rule corresponds to a graph segment, e hl;ui�! f (e hl;ui�!� f , if the rule is in R00). Acyclic constraint graph is essentially a signal transition graph (STG) [17] in which timingconstraints have been added to the arcs.As an example, a SCSI protocol controller, originally speci�ed with a STG [18], isspeci�ed by its timed HSE speci�cation in Figure 11. The timed ER structure for thisspeci�cation is shown as a cyclic constraint graph in Figure 12. Note that as an optimizationa simple analysis of the graph determines that some rules can be removed without changingthe speci�ed behavior. In particular, the following redundant rules from R0 are not depictedin Figure 12: hgo "; go #; 20; 50ihack #; ack "; 20; 50i;and the following redundant rules from R00 are also not depicted:hgo #; go "; 20; 50ihack "; ack #; 20; 50iIn general, a rule he; f; l; ui in R0 can be removed if there exists an alternative path from eto f which traverses only arcs from rules in R0, the total minimum delay along this path is

CHAPTER 3. TIMING ANALYSIS 34greater than or equal to l, and the total maximum delay along this path is greater than orequal to u. If the rule is from R00, then the alternative path must include one and only onearc from a rule in R00 and all other arcs from R0.module scsi;input ack = f true,h20; 50i g;input go = f false,h20; 50i g;output req = f true,h0; 5i g;output rdy = f false,h0; 5i g;output q = f true,h0; 5i g;process scsictrl;�[req #; rdy "; q #; [go "]; rdy #; [ack #]; req "; [go #]; q "; [ack "]]endprocessprocess ackenv;�[[req #]; ack #; [req "]; ack "]endprocessprocess goenv;�[[rdy "]; go "; [rdy #]; go #]endprocessendmoduleFigure 11: Timed HSE speci�cation for a SCSI protocol controller.
req↓ rdy↑

ack↓

req↑

ack↑

go↑

rdy↓

go↓

q↑

q↓

[0,5]

[0,5]

[0,5]

[0,5]

[0,5] [0,5]

[0,5][20,50]

[20,50]

[20,50]

[20,50]

[0,5] [0,5]

[0,5]

Figure 12: Cyclic constraint graph for a SCSI protocol controller.

CHAPTER 3. TIMING ANALYSIS 35A requirement for the timing analysis algorithm described in the next section is thatthe cyclic constraint graph is well-formed. A cyclic constraint graph is well-formed if it isstrongly connected, every cycle has at least one arc which is initially marked, and for everyevent there exists a cycle including the event in which there is just one initially marked arc.Many speci�cations are not well-formed, but such speci�cations can often be analyzed bytransforming them into ones which are well-formed.An in�nite con
ict-free timed ER structure is represented with an in�nite acyclic con-straint graph. Each event e in the cyclic constraint graph can be mapped onto an in�nitenumber of events in the acyclic constraint graph of the form he; ii where i is used to denoteeach separate cycle from the unfolding of the cyclic constraint graph. The �rst cycle hasi = 0, and i increments with each following occurrence. In the in�nite acyclic constraintgraph, each rule he; f; l; ui corresponds to an in�nite number of graph segments of the form:he; ii hl;ui�! hf; ii (if the rule is in R00 then it is of the form he; i� 1i hl;ui�! hf; ii).A special reset event is added to the set of events in order to model the reset of thecircuit. For each initially marked rule (i.e., each rule in R00) with enabled event f , a resetrule is added between the reset event and the event f . This rule models special timingconstraints on the initial occurrence of the event f . The default timing constraint has alower bound equal to the minimum of all initially marked rules with enabled event f andthe upper bound is the maximum. E�ectively, the acyclic constraint graph is constructedby cutting the cyclic constraint graph at the initial marking and unfolding the graph anin�nite number of cycles. Part of the unfolded in�nite acyclic constraint graph for the SCSIprotocol controller is shown in Figure 13.
〈req↓,0〉

〈rdy↑,0〉

〈ack↓,0〉 〈req↑,0〉 〈ack↑,0〉

〈go↑,0〉

〈rdy↓,0〉

〈go↓,0〉

〈q↑,0〉

〈q↓,0〉

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[20,50]
[20,50]

[20,50]

[20,50]

[0,5]

[0,5]

[0,5]

〈reset,0〉

〈req↓,1〉Figure 13: Part of the acyclic constraint graph for the SCSI protocol controller.

CHAPTER 3. TIMING ANALYSIS 363.2 Estimating the Worst-Case Time Di�erenceIn order to synthesize timed circuits, timing analysis must be used to deduce the timinginformation necessary to compute the reachable state space. For any particular state en-countered while exploring the state space described by a cyclic constraint graph, there maybe many possible next states depending on what is the next event that occurs. Timing anal-ysis can be used to reduce the number of possible next states by showing that certain eventswhich appear concurrent in the speci�cation are actually ordered. The timing informationwhich is required for this check is the minimum and maximum di�erence in time betweenany two events in the cyclic constraint graph. Polynomial-time algorithms have been de-veloped [46] [73] to determine the di�erence in time between any two events in an acyclicgraph. Circuit speci�cations, however, are normally cyclic. Therefore, to apply these algo-rithms to circuit synthesis, these results must be extended to handle cyclic speci�cations.Exponential-time algorithms have been proposed that �nd time di�erences in cyclic graphs[3, 35]. In this section, we propose a polynomial-time heuristic algorithm which is su�cientfor the analysis of con
ict-free timed ER structures. Our algorithm unfolds the cyclic graphinto an in�nite acyclic graph and then examines only two �nite acyclic subgraphs of thein�nite graph to determine a su�cient bound on the time di�erence between two events.3.2.1 Worst-Case Time Di�erenceA time di�erence is a bound in the amount of time between two events in the cyclic con-straint graph for a particular cycle. The worst-case time di�erence is a bound on theminimum and maximum di�erence in time between two events for any cycle.De�nition 3.2.1 (Time Di�erence) Given two events and the cycles of their occurrencehu; i� ji and hv; ii where j � 0 is their cycle o�set, the time di�erence between these twoevents is the strongest bound [Li; Ui] such that:Li � t(hv; ii)� t(hu; i� ji) � UiDe�nition 3.2.2 (Worst-Case Time Di�erence) Given two events u and v from a cyclicconstraint graph and the cycle o�set between them j where j � 0, the worst-case timedi�erence between these two events in any cycle is [L; U] de�ned to be:L = mini�j fLig and U = maxi�j fUig;where [Li; Ui] is the time di�erence between u and v with o�set j in each cycle i.

CHAPTER 3. TIMING ANALYSIS 373.2.2 Algorithm to Estimate the Worst-Case Time Di�erenceA pair of events from a cyclic constraint graph can appear in an in�nite number of cyclesin the corresponding acyclic constraint graph; however, it is possible to analyze a �nitenumber of cycles to �nd a su�cient estimate of the worst-case time di�erence.De�nition 3.2.3 (Estimate of the Worst-Case Time Di�erence) Given the worst-case timedi�erence [L; U] between two events from a cyclic constraint graph, an estimate of the worst-case time di�erence is any [L0; U 0] such that L0 � L and U 0 � U .Given two events u and v from a cyclic constraint graph and a cycle o�set between themj, Algorithm 3.2.1 determines an estimate of the worst-case time di�erence between themby constructing two �nite acyclic subgraphs to be analyzed by Algorithm 3.2.2. The �rstsubgraph includes only events from cycles i � 1 and i for some arbitrary value of i > 0.A source event is added to this subgraph, and for each rule in R00, an additional arc isadded from the source event to the enabled event with a timing constraint of [0;1]. Thisconstruction guarantees that no timing assumptions are made about previous cycles whichare not modeled in our �nite graph. For the special case when i = 0, another subgraph isconstructed which includes only events from cycle 0. We prove later that the analysis ofthese two subgraphs yields an estimate of the worst-case time di�erence.These two subgraphs are acyclic and �nite so the algorithms described in [46] and [73]can be used to �nd the time di�erence between any two events hu; i� ji and hv; ii in thesegraphs. The function MaxDi� (de�ned recursively in Algorithm 3.2.3 [73]) is used to �ndthe upper bound of the time di�erence Ui. MaxDi� is also used to �nd the minimum timedi�erence Li since MinDi�(hu; i� ji; hv; ii) = (�1) �MaxDi�(hv; ii; hu; i� ji) [46] [73]. Theestimate of the worst-case time di�erence returned by Algorithm 3.2.1 is the minimum ofthe lower bounds and the maximum of the upper bounds of the time di�erences for the ithand 0th cycle. Since the worst-case time di�erence is only de�ned over values of i wherei � j, the 0th occurrence only needs to be considered if j = 0. As an optimization, whenthis algorithm is called repeatedly the graphs are created only once for a given circuit, andonce a time di�erence is calculated for a particular pair of events, it is stored in a table.For the example shown in Figure 12, the estimate of the worst-case time di�erence foundby Algorithm 3.2.1 between the two events rdy # and q # with cycle o�set j = 0 is the bound[15; 55]. This means that rdy # always occurs at least 15 units of time after q #, but nomore than 55 units of time after q #.

CHAPTER 3. TIMING ANALYSIS 38Algorithm 3.2.1 (Estimate the worst-case time di�erence in a cyclic graph)bound WCTimeDi�(timed ER structure hA0; E0; R0; R00i; events u; v; cycle o�set j) fif (j > 1) then return([�1;1]);else fconstruct subgraph G from hA0; E0; R0; R00i using only events with cycle indicesi� 1 and i for an arbitrary i > 0 and exclude rules with reset enabling event;add source event to graph G;foreach rule of the form he; f; l; ui in R00, add an arc from source to hf; i� 1iweighted with h0;1i;[Li; Ui] = TimeDi�(G; hu; i� ji; hv; ii);if (j == 1) then return([Li; Ui]);else fconstruct subgraph G0 from hA0; E0; R0; R00i using only events with cycle index 0;[L0; U0] = TimeDi�(G0; hu; 0i; hv; 0i);L0 = min(Li; L0);U 0 = max(Ui; U0);return([L0; U 0]);g g gFigure 14: Algorithm to �nd an estimate of the worst-case time di�erence in a cyclic graph.Algorithm 3.2.2 (Find a time di�erence in an acyclic graph)bound TimeDi�(acyclic graph G; events hu; i� ji, hv; ii) fLi = (�1) �MaxDi�(G; hv; ii; hu; i� ji);Ui = MaxDi�(G; hu; i� ji; hv; ii);return([Li; Ui]);g Figure 15: Algorithm to �nd a time di�erence in an acyclic graph.

CHAPTER 3. TIMING ANALYSIS 39Algorithm 3.2.3 (Find a maximum time di�erence in an acyclic graph)int MaxDi�(acyclic graph G; events hu; i� ji, hv; ii) fmaxdi� = maxhe;i�"ihl;ui�!hv;ii2GfMaxDi�(G; hu; i� ji; he; i� "i) + ug;if there is a path from hv; ii to hu; i� ji thenmaxdi� = minf minhe;i�j�"ihl;ui�!hu;i�ji2GfMaxDi�(G; he; i� j � "i; hv; ii)+ lg;maxdi�g;return(maxdi�);g Figure 16: Algorithm to �nd a maximum time di�erence in an acyclic graph.3.2.3 Proof of CorrectnessTheorem 3.2.1 shows that the bound for the ith cycle, [Li; Ui], found in Algorithm 3.2.1 isan estimate for all i > 0. Therefore, combining this with the actual time di�erence for i = 0results in an estimate of the worst-case time di�erence.Theorem 3.2.1 Algorithm 3.2.1 determines an estimate of the worst-case time di�erencebetween two events in a cyclic constraint graph for any cycle.Proof: In order to show that Algorithm 3.2.1 returns an estimate of the worst-casetime di�erence, we must show that the following inequalities hold: L0 � L and U 0 � U(from De�nition 3.2.3). If j > 1 then Algorithm 3.2.1 returns [L0; U 0] = [�1;1] whichtrivially satis�es De�nition 3.2.3. If j = 1 then it returns [L0; U 0] = [Li; Ui]. If j = 0 thenAlgorithm 3.2.1 returns L0 = min(L0; Li) and U 0 = max(U0; Ui). Since [L0; U0] is an actualtime di�erence for the 0th cycle, we only need to show that [Li; Ui] always yields an estimatefor i > 0. A maximum time di�erence is calculated recursively in terms of other maximumtime di�erences (see Algorithm 3.2.3). Therefore, when calculating Ui using subgraph G,one of two cases may occur. Its value may be independent of maxdi� values for events not ingraph G (i.e., events from cycles less than i� 1). If this is the case, then Ui = mini�1fUig.On the other hand, if it depends on time di�erences of earlier events not in graphG, then justbefore MaxDi� falls o� the end of the graph, it calls either MaxDi�(G; source; hf; i� 1i) (1)or MaxDi�(G; hf; i� 1i; source) (2). Since the rule between hf; i� 1i and source has timingconstraint [0;1], (1) will return 1, and (2) will return 0. If graph G were extended toinclude another cycle, the rule between source and hf; i� 1i would be replaced with a rule

CHAPTER 3. TIMING ANALYSIS 40of the form he; f; l; ui. Now, MaxDi�(G; he; i� 2i; hf; i� 1i) would be called which wouldreturn a value less than or equal to 1, or MaxDi�(G; hf; i� 1i; he; i� 2i) would be calledwhich would return a value less than or equal to 0 (note this second case is never positivebecause from the ordering de�ned by the rule, we know that e always occurs before f).This relationship continues to hold if the graph is extended an in�nite number of cycles.Since the value found for case (1) and for case (2) is greater than that found if graph Gis extended back further, and since the maximum time di�erence is calculated by addingthese values to values found on the rest of the graph, we know that the value calculated forUi using graph G will be less than or equal to the actual value of Ui for i > 1. Therefore,U 0 � U , and we can similarly show that L0 � L. Thus, Algorithm 3.2.1 gives an estimateof the worst-case time di�erence.3.2.4 Complexity of the AlgorithmCalculating the time di�erence of each pair of events using the MaxDi� algorithm hascomplexity O(v � e) where v is the number of vertices and e is the number of arcs in thegraph [46]. Let jE 0j and jR0j be the number of events and rules, respectively, in the cyclicconstraint graph representation. The largest graph which Algorithm 3.2.1 analyzes has2jE 0j vertices and 2jR0j arcs. Therefore, using Algorithm 3.2.1 to calculate estimates for alltime di�erences has complexity O(jE 0j � jR0j).3.2.5 Extensions to Find a Better EstimateIf either the bound is not tight enough or there is interest in �nding worst-case time di�er-ences of events across more than one cycle (i.e., j > 1), the algorithm can be extended byincreasing the size of the subgraphs which Algorithm 3.2.1 analyzes. Assuming subgraph Gis enlarged to contain c cycles (c = 2 in Algorithm 3.2.1), the algorithm is modi�ed in thefollowing ways:1. Construct subgraph G using only events from cycles i�(c�1); : : : ; i where i > (c�2).2. Construct subgraph G0 using only events from cycles i � (c� 2).3. If j � (c� 2) then using graph G0, �nd [Lj ; Uj]; : : : ; [L(c�2); U(c�2)].4. L0 = min(Li; Lj ; : : : ; L(c�2)) and U 0 = max(Ui; Uj ; : : : ; U(c�2)).

CHAPTER 3. TIMING ANALYSIS 41In the modi�ed algorithm, estimates of worst-case time di�erences with j � (c� 1) cannow be found. Theorem 3.2.1 can easily be extended to show that the modi�ed algorithmreturns an estimate of the worst-case time di�erence. It is also easy to show that thecomplexity of the modi�ed algorithm is O(cjE 0j � cjR0j).3.2.6 Termination of the AlgorithmIn order to avoid unnecessary calculations, the algorithm can be modi�ed to check if ex-tending the size of the subgraphs analyzed (i.e., increasing c) is helpful. To do this, thealgorithm is modi�ed to return a best-case estimate, [Lbest; Ubest], in addition to the worst-case estimate, [L0; U 0], where Lbest = min(Lj ; : : : ; L(c�2)) and Ubest = max(Uj ; : : : ; U(c�2)).Given the actual worst-case time di�erence is [L; U], it is easily shown that these estimatessatisfy the inequalities: L0 � L � Lbest and Ubest � U � U 0. If tightening the bound to[Lbest; Ubest] would not result in less circuitry than [L0; U 0], then it is not worth increasingc. In fact, if Lbest = L0 and Ubest = U 0, then the actual worst-case time di�erence [L; U] hasbeen found. In general, increasing c does not guarantee that the exact bound [L; U] canalways be found, but in all the circuit examples that we synthesized using Algorithm 3.2.1(i.e., c = 2), it either found the exact bound or at least a su�ciently tight bound to detectall redundancies.3.2.7 Removing Redundant RulesOne application of this timing analysis algorithm is to determine if a rule in a con
ict-freetimed ER structure is redundant. A rule is redundant in a timed ER structure if its omissiondoes not change the behavior speci�ed. In other words, given a structure S and a rule r,a new structure S 0 constructed by removing r from its rule set has the same set of timedcon�gurations (i.e., C(S 0) = C(S)).If there are multiple rules enabling an event, then it is possible that some of them areredundant. In addition to the redundant rules described in Section 3.1, timing analysiscan be used to �nd additional redundant rules. Algorithm 3.2.4 checks each rule by usingAlgorithm 3.2.1 to �nd an estimate of the worst-case time di�erence between the enabledand enabling event. If the lower bound of this estimate is larger than the upper bound ofthe timing constraint on the rule, then this rule cannot be constraining the behavior so itis redundant.

CHAPTER 3. TIMING ANALYSIS 42Algorithm 3.2.4 (Find redundant rules)structure FindRed(timed ER structure hA0; E0; R0; R00i) fforeach rule of the form he; f; l; ui in R0 f[L0; U 0]=WCTimeDi�(hA0; E0; R0; R00i; e; f; 0);If (L0 > u) then R0 = R0 � fhe; f; l; uig;gforeach rule of the form he; f; l; ui in R00 f[L0; U 0]=WCTimeDi�(hA0; E0; R0; R00i; e; f; 1);If (L0 > u) then R00 = R00 � fhe; f; l; uig;greturn(hA0; E0; R0; R00i);g Figure 17: Algorithm to �nd redundant rules.The SCSI protocol controller depicted in Figure 12 has four events that are enabled bymultiple rules: req #, rdy #, req ", and q ". For the rule, hq #; rdy #; 0; 5i, Algorithm 3.2.1estimates the worst-case time di�erence between the two events rdy # and q # to be thebound [15; 55]. Since the lower bound of this time di�erence, 15, is greater than the upperbound of the timing constraint on the rule, 5, the rule is found to be redundant. In otherwords, the rule between the events q # and rdy # can be removed without changing thespeci�ed behavior. Further analysis �nds this to be the only redundant rule.3.3 Orbital NetsAlgorithm 3.2.1 is limited to analyzing con
ict-free timed ER structures, and therefore,it can only be used on deterministic speci�cations. In order to address non-deterministictimed ER structures, we use partial order timing, an e�cient, general algorithm whichoperates on an orbital net representation to �nd the reachable state space. In this section,we describe the orbital net representation, and how to translate a timed ER structure intoan orbital net which satis�es the necessary properties to be analyzed using partial ordertiming analysis.An orbital net is essentially a labeled safe Petri net extended with automatic net con-structions and syntactic shorthands. The net constructions allow us to have relativelystraightforward operational semantics, while the syntactic shorthands allow us to compose

CHAPTER 3. TIMING ANALYSIS 43the nets without an exponential blowup in net size. These features are described in detailin [60]. Orbital nets also include constructs for specifying timing requirements and simulta-neous actions which allow us to easily mix behavior and environmental requirements evenat the gate model level. These last two features are described in detail in the followingsubsections.An orbital net is modeled by the tuple hA; P; T; F;M0;TR; Li where A is the set ofatomic actions, P is the set of places, T is the set of transitions, F � (P � T) [(T � P) isthe set of edges,M0 � P is the initial marking, TR is an assignment of timing requirementsto places, and L is a function which labels transitions with sets of simultaneous actions.For a place p 2 P , the preset of p (denoted �p) is the set of transitions connected to p (i.e.,�p = ft 2 T j (t; p) 2 Fg), and the postset of p (denoted p�) is the set of transitions towhich p is connected (i.e., p� = ft 2 T j (p; t) 2 Fg). For a transition t 2 T , the presets andpostsets are similarly de�ned (i.e., �t = fp 2 P j (p; t) 2 Fg and t� = fp 2 P j (t; p) 2 Fg).3.3.1 Timing RequirementsTiming in an orbital net is associated with a place as a timing requirement consisting ofa lower bound, an upper bound, and a type (denoted hl; uitype). The lower bound is anonnegative integer and the upper bound is an integer greater than or equal to the lowerbound, or 1. Again, since real values can be expressed as rationals within any requiredaccuracy, restricting the bounds of timing requirements to be integers does not decrease theexpressiveness of orbital nets.There are two types of timing requirements: behavior (b) and constraint (c). Behaviortiming requirements are used to specify guaranteed timing behavior. Constraint timingrequirements, on the other hand, are used to specify desired timing behavior, and they donot a�ect the actual timing behavior. If the timing requirement on a place is omitted, it isassumed to be h0;1ic.Consider a D-type
ip-
op (FF) pictured in Figure 18(a). The timing requirementsfor the FF are depicted using a timing diagram in Figure 18(b) and using an orbital net inFigure 18(c). This FF has a setup time of 5 time units which is represented with a constrainttiming requirement from the rising transition on the input D to the rising transition on theclock '. Similarly, a hold time of 5 time units is represented with a constraint timingrequirement from the rising transition on the clock ' to the falling transition on the inputD. Note that these are requirements that the environment must satisfy, and the FF cannot

CHAPTER 3. TIMING ANALYSIS 44guarantee this behavior. The delay of the FF is represented as a behavior timing requirementfrom the rising transition of the clock ' to the rising transition on the output Q. Thisrequirement says that the FF circuit will generate Q " between 5 and 8 time units after' ".
FF

D

ϕ

Q

Q

D

ϕ

Q

D↑

D↓

ϕ↑

Q↑

〈5, ∞〉c

〈5, ∞〉c 〈5, 8〉b

〈5, ∞〉c 〈5, ∞〉c
〈5, 8〉b

(a) (b) (c)Figure 18: (a)A D-type
ip-
op; (b) its timing requirements represented using a timingdiagram; (c) its timing requirements represented using an orbital net.When there is a single behavior place p in the preset of a transition, regardless of theinterpretation, the time of occurrence of a transition in the postset of p (denoted t(p�))is always greater than the time of occurrence of any transition in the preset of the place(denoted t(�p)) by at least the lower bound of the timing requirement on p, and it isalways less then the upper bound. If, on the other hand, there are multiple behavior placesin the preset of a transition, there are four di�erent ways the speci�ed behavior can beinterpreted [72]. The �rst, or type 1, says that for all behavior places p, t(p�) � t(�p)must exceed the lower bound but must not exceed the upper bound (this is the type usedby our constraint places). If no possible timing behavior satisfy these requirements, thespeci�cation is inconsistent. The second, or type 2, says that for all behavior places p,t(p�)� t(�p) must exceed the lower bound and for at least one behavior place, t(p�)� t(�p)must not exceed the upper bound. This is the type usually associated with circuit behavior,so it is the type we associate with our behavior places. Types 3 and 4 are duals in whichonly a single lower bound needs to be reached (i.e., an OR relationship). These two typesare not considered as they do not correspond with the conjunctive nature of the Petri-netmodel.The partial order timing analysis algorithm described later relies on the fact that eachbehavior place represents a single nondeterministic choice of delay that cannot be a�ectedby other behavior places. When there are multiple behavior places in the preset of atransition, the type 2 semantics allow the delay between the transition in the preset and

CHAPTER 3. TIMING ANALYSIS 45postset of a behavior place to exceed the requirements upper bound if the transition inthe postset is being constrained by another behavior place. Therefore, the partial ordertiming analysis algorithm requires speci�cations to include at most a single behavior placein the preset of each transition. Fortunately, the original orbital net speci�cation canalways be transformed, as described later, into one which satis�es this single behavior placerequirement.3.3.2 Simultaneous ActionsFor a large class of speed-independent and delay-insensitive designs, any hazard is poten-tially fatal [5], so simple delay models that are easy to integrate into gate models su�ce.With the more complex delay models required for modeling real-time circuit delay, suchintegration is no longer easy or straightforward. Labeling each transition in an orbital netwith a (possibly empty) set of simultaneous actions remedies this di�culty by allowing thefunction of a gate to be modeled separate from its delay behavior without a signi�cantblowup in the state space size.Consider, for example, an AND gate with a delay of 2 to 4 time units. Under the outputdelay model, the gate is modeled with an instantaneous function block followed by a delayelement as shown in Figure 19(a). The orbital net corresponding to the functional behaviorof the AND gate is given in Figure 19(b). In this net, there are four places correspondingto the four states of the two input signals a and b, and the value of c in each place tracksexactly the AND of the signals a and b. The orbital net corresponding to a simple delayelement is shown in Figure 19(c). The behavior place labeled h2; 4i indicates that an outputwill occur between 2 and 4 time units after the preceding input occurs; no behavior violatingthis requirement will be generated by the net. The constraint places do not constrain thebehavior of the net, but if another input event occurs before the preceding output eventthen the environment violates the speci�cation. Composition of these nets gives an ANDgate operating under the output delay model. In a similar manner, an AND gate operatingunder the input delay model could also be obtained.The delay model shown in Figure 19(c) is relatively simple, and it su�ces for manytypes of circuits. More complex delay models can and have been constructed, modelingmore accurately the behavior of a gate under hazard conditions; for these, the separationof gate models into combinational function and delay behavior is essential [60].

CHAPTER 3. TIMING ANALYSIS 46
b↑

a↑,c↑

b↓,c↓a↓

a↑

b↑,c↑

a↓,c↓

b↓

c↓
d↓

c↑d↑

(b) (c)

〈2, 4〉b

〈2, 4〉b

〈2, 4〉

(a)

a

b
c dFigure 19: (a) AND gate with inputs a and b, and output d; (b) orbital net for its functionalbehavior; (c) delay bu�er with input c, output d, and delay of h2; 4i.3.3.3 Operational SemanticsThe behavior speci�ed by an orbital net that satis�es the single behavior place requirementis de�ned with an operational semantics composed of two types of operations: advancementof time and �ring of transitions. In an orbital net, an untimed state is a marking of thenet. A timed state is an untimed state with a time-valued clock clki associated with eachmarked place pi. Each clock advances with time and denotes how long the place has beenmarked. Time is advanced by uniformly increasing these clocks by an amount � which isless than or equal to max-advance for a given marking. The function max-advance is de�nedas the minimum di�erence over all marked behavior places between the upper bound of thetiming requirement on the place and its clock, or1 if there are no marked behavior places.This upper limit on time advancement maintains the clocks for all behavior places belowthe maximum allowed by their range.In an orbital net, a transition is untimed-enabled if all places in its preset are marked.A transition is timed-enabled when it is untimed-enabled and if there is a behavior placein its preset, this place's clock is greater than the lower bound of the timing requirementon the place. Any timed-enabled transition can be �red instantaneously, and any numberof transitions can be �red without time advancing. A transition is �red by removing themarking in the places in its preset and discarding the clocks. The places in the postsetof the �red transition are then marked, and all newly marked places are assigned a clockinitialized to zero.Before �ring a transition, however, the constraint places in the entire net must be

CHAPTER 3. TIMING ANALYSIS 47checked, and if any constraint place pi is marked with clki > ui, this �ring is marked asa failure. Also, the clocks corresponding to a marking that is removed from a constraintplace pi must be checked, and if clki < li, this �ring is also marked as a failure. Finally,after the �ring of a transition, every marked behavior place must have a transition in itspostset that is untimed-enabled in the new state; if this condition is not satis�ed, this �ringis a failure. This requirement ensures that every marked behavior place can �re in all statesin which its timing conditions are met, and thus the value of its clock when it �res cannotbe controlled by external state. If a failure is detected during synthesis, the speci�cation isinconsistent and must be modi�ed before an implementation can be obtained. If a failureis detected during veri�cation, the timed circuit violates its speci�cation.These semantics de�ne the set of timed �ring sequences P , as a sequence of pairs of tran-sition �rings and time values. For simplicity, the time value represents a non-negative dura-tion since the previous pair. Executing a timed �ring sequence � on an orbital net results inthe timed state �re(�). The set P is de�ned recursively. The empty sequence " is in P . Forevery �ring sequence � in P and for every value of � such that � � max-advance(�re(�)),then �(�; �) is in P , where � represents an `empty' �ring. In addition, if a transition t istimed-enabled in �re(�), then �(t; 0) is also in P . The reachable state space is the range ofthe function �re over P .3.3.4 Transformation from a Timed ER Structure to an Orbital NetWinskel gave a construction from event structures to Petri nets [77]. We describe a similarconstruction from timed ER structures to orbital nets. Given a �nite representation of atimed ER structure S0 = hA0; E0; R0;#0; R00;#00i, Algorithm 3.3.1 constructs an orbital netN = hA; P; T; F;M0;TR; Li.The algorithm �rst initializes the elements of the orbital net representation. The actionset A for the orbital net is identical to the action set A0 for the timed ER structure.Similarly, the transitions T in the net correspond to the events E0 in the structure, and thelabeling function L for the transitions in the net is the same as the labeling function L0 forthe events in the structure. The place set P ,
ow relation F , and initial marking M0 areall initialized to the empty set. Finally, the next place label is set to 0.Next, the algorithm translates each rule in the structure to connections in the orbitalnet. For each rule, a connection is added from the transition which corresponds to theenabling event to a place, and another connection is added from the place to the transition

CHAPTER 3. TIMING ANALYSIS 48which corresponds to the enabled event. The algorithm must �rst determine if a new placeis going to be added to the net for these connections or if a place which already exists inthe net should be used. A place is shared between multiple rules if either the enablingevent con
icts with some other event which enables the same enabled event or the enabledevent con
icts with some other event which is enabled by the same enabling event. The�rst four if-clauses check for either of these two conditions in the two rule sets R0 and R00.Note the two rule sets are checked separately because it a�ects whether the place is in theinitial marking or not. If there is no con
icting event or a place has not yet been added forthe con
icting event, the last if-clause adds a new place to the orbital net with a timingrequirement set by the timing constraint from the rule.The function place : E�E ! P [fnoneg used in Algorithm 3.3.1 to �nd a place betweentwo transitions is de�ned as follows:place(e; f) = if 9p:f(e; p); (p; f)g � F then p else noneIf we apply these algorithms to the structures obtained for the sel process from the SEL,we obtain the orbital net shown in Figure 21(a). Part of the orbital net after compositionwith the other processes from the SEL is shown in Figure 21(b).3.3.5 Satisfying the Single Behavior Place RequirementBefore the partial order timing analysis algorithm can be used, the orbital net must betransformed to one which satis�es the single behavior place requirement. To accomplish this,consider a fragment of an orbital net that has two behavior places in the preset of a transitionshown in Figure 22(a). The desired timing behavior can be depicted graphically as shown inFigure 22(b). This net can be transformed to the one shown in Figure 23(a) which satis�esthe single behavior place requirement. Basically, the idea behind this net transformationis that a path through the net is created for each possible ordering of the transitions inthe preset. This has the e�ect that each transition in the preset is given the chance tobe the last one preventing the transitions in the postset from occurring. For illustrationpurposes, additional events c0 and c1 are added to the net to occur simultaneously with thetwo transitions associated with c. The timing behavior of c0 and c1 are shown graphicallyin Figure 23(b) and (c), respectively. The behavior of these two together is exactly thedesired timing behavior of c. For n behavior places, the net is transformed to model then! possible orderings of the n enabling events. While this transformation can lead to a

CHAPTER 3. TIMING ANALYSIS 49
Algorithm 3.3.1 (Transform a timed ER Structure to an Orbital Net)net struct2net(timed ER structure hA0; E0; R0;#0; R00;#00i) fA = A0;T = E0;L(T) = L0(E0);P = F =M0 = ;;nextp = 0;foreach he; f; l; ui 2 R0 [R00) fp = none;initial = (he; f; l; ui 2 R00);if 9g:e#g ^ hg; f; l; ui 2 R0 then finitial = false;p = place(g; f);gif p = none ^ 9g:e#g ^ hg; f; l; ui 2 R00 then p = place(g; f);if p = none ^ 9g:f#g ^ he; g; l; ui 2 R0 then finitial = false;p = place(e; g);gif p = none ^ 9g:f#g ^ he; g; l; ui 2 R00 then p = place(e; g);if p = none then fp = nextp++;P = P [fpg;if initial then M0 =M0 [fpg;TR(p) = hl; uib;gF = F [f(e; p); (p; f)g;greturn (hA; P; T; F;M0;TR; Li);g Figure 20: Algorithm to transform a timed ER structure to an orbital net.

CHAPTER 3. TIMING ANALYSIS 50
selo↑

selo↓

sel1i↓

sel1i↑ sel2i↑ selo↓

sel2i↓

〈40, 260〉b

〈2, 40〉b〈2, 40〉b

selo↑

selo↓

sel1i↓

sel1i↑ sel2i↑

selo↓

sel2i↓

〈40, 260〉b

〈2, 40〉b〈2, 40〉b

out2o↑

〈0, 20〉b

〈0, 20〉b

out1o↑

〈0, 20〉b

〈0, 20〉b

xferi↑

(a) (b)

〈0, 20〉b

〈0, 20〉b

〈2, 40〉b〈2, 40〉b

〈40, 260〉b

••
•

Figure 21: (a) Orbital net for the sel process from the SEL; (b) part of the orbital net aftercomposition with the other processes.substantial blowup in the net size, we have found that the value of n tends to be quite smallin practical examples.The transformation is more complicated in the case that one of the behavior places inthe preset has multiple transitions in its postset. Consider a fragment of the orbital net fromthe SEL shown in Figure 24(a). In this net, the behavior place in the postset of datai "is shared by the transitions out1o " and out2o ". In other words, if out2o " occurs, themarking is removed before it can contribute to the �ring of out1o ". In order to model this,the net is �rst transformed using the procedure described above for out1o " and out2o ".Then, transitions are added to the part associated with out1o " on out2o " that reset themarking, and similarly transitions are added to the part associated with out2o " on out1o ".A portion of the transformed net illustrating this is shown in Figure 24(b).3.4 Partial Order TimingIn orbital nets, the clocks associated with each marking can take on real values, so thereare an in�nite number of timed states. In order to perform explicit state space exploration,

CHAPTER 3. TIMING ANALYSIS 51
ba

c

(a) (b)

〈la, ua〉b 〈lb, ub〉b

t(c) - t(a)

t(c) - t(b)
la

ua

lb ubFigure 22: (a) Fragment of the orbital net that violates the single behavior place require-ment; (b) graphical representation of the desired timing behavior.
a

(a)

b

c0, c c1, c

〈la, ua〉b 〈lb, ub〉b

t(c0) - t(a)

t(c0) - t(b)
la

ua

lb ub

t(c1) - t(a)

t(c1) - t(b)
la

ua

lb ub

(b) (c)Figure 23: (a) Orbital net that satis�es the single behavior place requirement; graphicalrepresentation of the timing behavior of c0 (b) and c1 (c).
datai↑ sel2i↑ out2i↓out1i↓ sel1i↑

out1o↑ out2o↑

(a)

〈0, 20〉b 〈0, 20〉b 〈0, 20〉b 〈0, 20〉b 〈0, 20〉b

out1o↑ out1o↑ out2o↑

out1i↓ sel1i↑ datai↑

〈0, 20〉b 〈0, 20〉b 〈0, 20〉b

(b)

•••

••
•

••
•

a b

a b

••
•

Note: “a” and “b” are shorthands for connections.Figure 24: (a) Fragment of an orbital net with a behavior place that has multiple transitionsin its postset; (b) part of the transformed orbital net that satis�es the single behavior placerequirement.

CHAPTER 3. TIMING ANALYSIS 52we must either group the timed states into a �nite number of equivalence classes or sets, orrestrict the set of values that the clocks can attain.Alur's unit-cube technique has the best known worst-case complexity for timed statespace exploration of general timed systems [1]. This technique considers equivalence classesof timed states with the same integral clock values and a particular linear ordering of thefractional values of the clocks. For the case where there are two marked places and twoclocks clk1 and clk2, the equivalence classes are pictured in Figure 25(a); every point, linesegment, and interior triangle is an equivalence class. Let us assume the number of distinctuntimed states in an orbital net is jSj. If the maximum value of any timing requirementis k, and there are at most n marked places in the net in any state (this value is triviallybounded by the size of the safe net), the worst-case size of the state space for his methodis asymptotically [60], jSj n!ln 2 � kln 2�n 41=k:
100

10

0 clk1

clk2

10

10

0
0 clk1

clk2

(a) (b)

100

10

0 clk1

clk2

(c)Figure 25: (a) Unit-cube, (b) discrete, and (c) geometric representations of the timed statespace.It has been proven, however, that the general unit-cube technique is unnecessary fororbital nets since considering only integer event times gives a full characterization of thecontinuous-time behavior [60] (this proof is similar to one given by Henzinger, et. al. in[32] for timed transition systems). In other words, only timed states associated with eachdiscrete-time instance, represented as a point for the two-dimensional case in Figure 25(b),needs to be considered. This technique is used by Burch for verifying timed circuits [14],and as a worst-case state space size of jSj (k+1)n which is better than the unit-cube methodby more than n!.Both unit-cubes and discrete-time, however, are of little more than theoretical interest

CHAPTER 3. TIMING ANALYSIS 53because the size of the state space increases exponentially with the concurrency in the net.For a circuit with timing values accurate to two signi�cant digits, with up to six independentconcurrent pending events, the state space is easily in excess of 1012 states|well beyondthe capabilities of most �nite-state synthesis and veri�cation techniques.In this section, we �rst discuss geometric timing, a timing analysis technique that usuallyperforms well in practice, even though the worst-case performance is much worse than eitherthe unit-cube or the discrete-time approaches. Dill [23], Lewis [41], and Berthomieu andDiaz [8] originated geometric state space exploration, and it has become an active areaof research [2, 31, 29]. Then, we describe our proposed technique, partial order timing,which improves upon the geometric methods by making use of concurrency and causalityinformation. Recent work by Yoneda et. al. [79] also considered partial orders. Ourwork di�ers in that our formalism includes notions of speci�cation, circuit composition,and receptiveness which enable us to perform e�cient state space exploration on nontrivialtimed circuit examples. To our knowledge, neither timed automata nor time Petri nets havebeen used in this fashion.3.4.1 Geometric RegionsRather than consider at each step a single discrete-time state, or a minimum equivalenceclass of timed states, the geometric timing method considers an in�nite set of timed statesin parallel. Speci�cally, convex geometric regions of timed states represented by upper andlower bounds on speci�c clock values and on the di�erences between pairs of speci�c clockvalues are used as the representation of the timed state space. The set of such constraintsis usually represented by a matrix A, where the constraints on clocks fclk1; : : : ; clkng are ofthe form clki� clkj � aji. A �ctitious clock clk0 that is always exactly zero is introduced sothat upper and lower limits on a particular clock can be represented in the same form [23].For any convex region that can be represented by such a matrix, there are many matricesthat represent the same convex region. The process of canonicalization using Floyd's algo-rithm can be performed to yield a unique constraint matrix [23]. While in general Floyd'salgorithm runs in time O(n3), since only incremental changes are made to the matrix dur-ing analysis, specializations of Floyd's algorithm that run in time O(n2) su�ce [60]. Twosample regions are given in Figure 25(c).

CHAPTER 3. TIMING ANALYSIS 543.4.2 State Space Exploration with Geometric TimingEach geometric region can be considered as an in�nite set of timed states which are operatedon in parallel. In order to perform state space exploration using geometric timing, werede�ne the operational semantics of orbital nets in terms of these geometric regions asopposed to individual timed states. We do not discuss the aspects of state space explorationthat do not consider time, since they are the same in both cases. We describe how theseoperations work for a single step in a timed sequence, assuming it works for the predecessorsequence; the trivial base case and structural induction on sequences completes the proofthat these operations work for all sequences.In our original operational semantics, advancing time involves adding some number t toall clocks. For geometric regions, advancing time involves extruding the geometric regionin the clk1 = clk2 = � � � = clkn direction, subject to max-advance, which itself is a convexregion.Determining whether a particular transition is timed-enabled in our original operationalsemantics entails comparing the clocks with the timing requirements. With geometric re-gions, we determine the subset of the timed states in the region for which the particulartransition is enabled. This can be performed by introducing the enabling conditions onthe transition as additional constraints on the region and recanonicalizing. For orbitalnets, these conditions describe a convex region in the appropriate form, and it is easy toshow that the intersection of two such convex regions is a convex region of the same form.Canonicalization by de�nition does not reduce the set of timed states represented.After selecting an enabled transition, �ring that transition involves removing some setof clocks and introducing new clocks initialized to zero. With geometric regions, removingthese clocks involves projection of the system of constraints to eliminate a particular set ofvariables, and introducing new clocks is done by adding a new set of variables equal to zero.3.4.3 Performance of Geometric TimingWhile unit-cubes and discrete-time operate on timed �ring sequences, geometric timingoperates over untimed �ring sequences. The function untime(�) returns the underlyinguntimed �ring sequence from a given timed �ring sequence by stripping the timing andremoving any � �rings. For each untimed �ring sequence � operated on by geometrictiming, it calculates directly the full set of timed states reachable from all timed �ring

CHAPTER 3. TIMING ANALYSIS 55sequences � that satisfy untime(�) = �. Thus, rather than separately considering everypossible occurrence time for a particular transition in � during state space exploration, inone step the geometric region method considers all possible occurrence times.State space exploration using geometric timing can be very e�cient. However, someexamples require an extremely large number of geometric regions such as the adverse ex-ample adv4x40 shown in Figure 26. While only having a single untimed state, standardgeometric timing techniques generate an incredible 219,977,777 distinct geometric regions.This is more than either the number of discrete-time states or unit-cube equivalence classes.
a

〈1, 40〉b

b

〈1, 40〉b

c

〈1, 40〉b

d

〈1, 40〉bFigure 26: The adverse example adv4x40 with n = 4 and k = 40.3.4.4 Concurrency, Causality, and PosetsThe major source of blowup in the adverse example is the way the standard geometric timingalgorithm calculates exactly the set of timed states reachable from a sequence of transition�rings; the transition �rings are linearly ordered, even if they are concurrent in the systembeing evaluated. That is, if two concurrent transitions start clocks, the constraints betweenthe two clocks re
ect the linear order that the transitions are �red in the original sequence.For example, when the geometric timing algorithm analyzes the untimed �ring sequence[a; b], it obtains the upper geometric region shown in Figure 27, and when the algorithmconsiders the sequence [b; a], it obtains the lower geometric region. In general, if there aren concurrent transitions that reset clocks visible in the resulting timed state, there are n!di�erent sequences that need to be considered, each of which leads to a distinct geometricregion. For this reason, it is important to distinguish the causal ordering of transitions fromthe non-causal ordering that comes about from the selection of a particular �ring sequence.To solve this problem, we construct a partially ordered set, or poset for each untimed�ring sequence which is represented with an acyclic, choice-free unfolding of the originalorbital net. The poset re
ects the causality and concurrency inherent in the �ring sequence.Initially, the unfolded net representing the poset contains a single transition with places inits postset corresponding to each initially marked place. Transitions are added in the same

CHAPTER 3. TIMING ANALYSIS 56
400

40

0
clkb

clka

[a, b]

[b, a]Figure 27: Geometric regions from the adverse example.order as they occur in the �ring sequence. For each transition in the �ring sequence, a corre-spondingly labeled transition is added to the unfolded net. A set of arcs into the transitionare connected from the most recently added places in the unfolded net corresponding toplaces in the preset of the transition in the original orbital net. Finally, a new set of placescorresponding to the places in the postset of the transition in the original net are added, andthese places are connected to the new transition. Every place and every transition in theunfolded net, except the �rst, correspond to some place and some transition in the originalnet. Every place and every transition in the original net correspond to zero or more placesand transitions in the unfolded net.A poset explicitly represents the concurrency in a particular �ring sequence. That is,a particular poset corresponds to many di�erent �ring sequences that di�er only in theinterleavings of concurrent transitions; every such �ring sequence �res the same set oftransitions and leads to the same �nal untimed state. For example, the poset representedwith the unfolded net shown in Figure 28 corresponds both to the sequence [a; b] and to thesequence [b; a].
〈1, 40〉b 〈1, 40〉b 〈1, 40〉b 〈1, 40〉b

〈1, 40〉b 〈1, 40〉b

a bFigure 28: One poset from the adverse example.

CHAPTER 3. TIMING ANALYSIS 573.4.5 State Space Exploration with Partial Order TimingState space exploration proceeds just as it does for the previous methods based on sequences,except that, for each sequence, the algorithm constructs the corresponding unfolded net.With depth-�rst search, this is done incrementally. The algorithm also incrementally cal-culates a constraint matrix that stores the �ring time relationship among the transitions.For each constraint place p, the constraint t(�p) � t(p�) is introduced. For each behaviorplace p in the resulting unfolded net with a timing requirement of hl; uib, two constraintsare introduced. The �rst re
ects the minimum separation, t(�p)� t(p�) � �l. The secondre
ects the maximum separation, t(p�)� t(�p) � u. All constraints introduced in this fash-ion for a given unfolded net must be satis�ed. After canonicalizing this constraint matrix, ithas produced a geometric region that represents the full set of reachable states for the posetcorresponding to the unfolded net. Applying this procedure to the unfolded net shown inFigure 28, we obtain at once the geometric region which encloses both regions shown inFigure 27.While geometric timing operates on untimed �ring sequences, partial order timing op-erates on posets. The function poset takes an untimed �ring sequence and returns thecorresponding unfolded net. For each untimed �ring sequence � operated on by the partialorder technique, it calculates directly the full set of timed states reachable from any timed�ring sequence � such that poset(untime(�)) = poset(�). Thus, rather than separately con-sidering every interleaving of concurrent transitions, in one step the partial order methodconsiders all possible interleavings. For untimed state space exploration, di�erent inter-leavings result in the same state. For timed state space exploration, di�erent interleavingsusually result in di�erent sets of timed states, with di�erent future behavior, leading to acombinatorial explosion of timed regions for each untimed state. Representing, as a singleconstraint matrix, the union of all timed states reachable from all possible interleavings,therefore, dramatically reduces the size of the state space representation. In fact, the partialorder method typically reduces the average number of timed regions for each untimed stateto a value close to one. For the adverse example in Figure 26, partial order timing obtainsexactly one geometric region corresponding to the one untimed state.

CHAPTER 3. TIMING ANALYSIS 583.4.6 E�ciency ConsiderationsThe number of transitions in the unfolded net is equal to the length of the �ring sequenceplus one, and it increases with the depth of our search. Calculating the minimum separa-tions between the occurrence times in the unfolded net, even with our incremental O(n2)approach, becomes prohibitively expensive as the �ring sequence lengthens. In addition, thealgorithm needs a constraint matrix for each step; this would require a tremendous amountof storage during depth-�rst search.To keep n bounded as the depth of our search increases, the algorithm determines whatpre�x, if any, of the unfolded net can safely be ignored. The algorithm can eliminate anytransitions that no longer a�ect future calculations. In general, the algorithm can eliminatea variable from any set of equations or inequalities whenever it has produced the full setof equations or inequalities that use that variable. Since all constraints introduced throughthe �ring of a transition are associated with places connecting the new transition to the old,once a transition in the unfolded net no longer has any places in its postset which do nothave a transition in their postset, it is eliminated from our constraint matrix. Thus, our nis|at most|the number of marked places in the original net at any given time, plus onefor the current transition.Because the number of geometric regions is typically small, a further optimization ispossible. Rather than backtracking only when an identical geometric region is found, oursearch can backtrack whenever a new geometric region is a subset of a previously seengeometric region. Comparing two geometric regions for inclusion can be performed inO(n2) time.3.5 Finding the Reduced State GraphIn order to generate a circuit implementation, many methodologies transform a higher-level speci�cation into a state graph (SG) so that Boolean minimization techniques can beapplied [17] [47]. Essentially, a state graph is a graph in which the vertices are bitvectorsand the arcs are signal transitions. Each bitvector speci�es the binary value of every signalin the system when the system is in that state. When synthesizing a timed circuit, oneof the timing analysis algorithms described in this chapter is utilized to generate a reducedstate graph (RSG) which often has signi�cantly fewer states than a SG generated withoutconsidering timing constraints. Since the size of the SG and the complexity of the circuitry

CHAPTER 3. TIMING ANALYSIS 59are strongly correlated, our method often results in simpler circuitry compared with othermethods that do not fully utilize timing constraints.A RSG is a graph in which its vertices are untimed states and its edges are possible statetransitions. A RSG is modeled by the tuple hI; O; �; � i where I is the set of input signals,O is the set of output signals, � is the set of states, and � � �� � is the set of edges. Foreach untimed state s, there is a corresponding labeling function s : I [O ! f0; R; 1; Fgwhich returns the value of each signal and whether it is untimed-enabled, i.e.,s(u) � 8>>>>><>>>>>: 0 if u is stable low in sR if u is untimed-enabled to rise in s1 if u is stable high in sF if u is untimed-enabled to fall in s.It is useful to also de�ne a function val which strips the excitation information, i.e.,val(u) � 8<: 0 if u = 0 or u = R1 if u = 1 or u = F .Traditional de�nitions of state labeling functions have not included the enabling ofsignals as it can usually be inferred from the set of state transitions. In timed circuits,however, it is possible that a signal is untimed-enabled but not timed-enabled in a givenstate. In this case, there would be no state transition out of that state in which that signal�red, and thus, it would not be possible to infer from the state graph that the signal isuntimed-enabled.A state graph is de�ned to be well-formed if for any state transition (s; s0) in � , the valueof exactly one enabled signal in s changes to a new value in s0. A state transition (s; s0) andthe signal v that di�ers in value is denoted as follows: s v! s0. Our synthesis procedure alsorequires that the state graph be complete state coded, de�ned to be that if for any two statesin which all signals have the same value, any output signal untimed-enabled in one stateis also untimed-enabled in the other. It has been reported that adding state variables cantransform an arbitrary state graph into one that satis�es complete state coding [19, 39, 74].These approaches, however, may be conservative when timing is considered. Therefore,we believe adding state variables to a timed speci�cation is an interesting open researchproblem.If the timed ER structure for the timed HSE speci�cation is con
ict-free, Algorithm 3.2.1can be used to derive the reduced state graph using a constrained token
ow described in

CHAPTER 3. TIMING ANALYSIS 60Algorithm 3.5.1. This is similar to token
ow which is used for �nding state graphs asdescribed in [47] [17]. The algorithm begins with the initial marking of the constraint graphwhich is de�ned as the set of rules enabled by reset. The function FindState is then used to�nd the state as de�ned above for the marking. Given a marking, an event f is enabled ifall rules of the form he; f; l; ui in both R0 and R00 are in the marking, or all rules of this formin R0 and the rule hreset; f; l; ui is in the marking. If in a marking more than one eventis enabled, all possible event sequences need to be generated. With timing constraints, itmay be possible that one of the enabled events is always preceded by another. The functionSlow, implemented in Algorithm 3.5.2, is used to check if an enabled event is slower thansome other enabled event. If so, the occurrence of the slower event is postponed. The resultis that some states are no longer reachable, yielding a reduced state graph. Note that ifthe function Slow is changed to always return FALSE then the resulting state graph is thesame as generated using regular token
ow.Algorithm 3.5.1 (Find the reduced state graph)set FindRSG(timed ER structure hA0; E0; R0; R00i) finitial marking = frules in R0 of the form hreset; f; l; uig;set of markings = finitial markingg;present state = FindState(hA0; E0; R0; R00i; initial marking);set of states = fpresent stateg;while (set of markings 6= ;) ftake marking from set of markings(i.e., set of markings = set of markings� fmarkingg);foreach enabled event f in marking fif not (Slow(hA0; E0; R0; R00i; f;marking)) then fnew marking = marking� frules in marking of the form he; f; l; uig+ frules in R0 [R00 of the form hf; g; l; uig;present state = FindState(hA0; E0; R0; R00i; new marking);if (present state 62 set of states) then fset of states = set of states+ fpresent stateg;set of markings = set of markings+ fnew markingg;g g g greturn(set of states);g Figure 29: Algorithm to �nd the reduced state graph.

CHAPTER 3. TIMING ANALYSIS 61
Algorithm 3.5.2 (Check if an event is slow)boolean Slow(timed ER structure hA0; E0; R0; R00i; event u; marking M) fforeach event v that is enabled in M where u 6= v fj=FindCycleO�set(v,u);if (j � 0) then f[L0; U 0]=WCTimeDi�(hA0; E0; R0; R00i; u; v; j);if (U 0 < 0) then return(TRUE);g else f[L0; U 0]=WCTimeDi�(hA0; E0; R0; R00i; v; u; (�1) � j);if (L0 > 0) then return(TRUE);ggreturn(FALSE);g Figure 30: Algorithm to check if an event is slow.

CHAPTER 3. TIMING ANALYSIS 62Using this algorithm on the SCSI protocol controller with the function Slow replacedwith FALSE (i.e., ignoring the timing constraints), the SG obtained contains 20 states asshown in Figure 31(a). If the timing constraints are considered, a RSG is derived whichcontains 16 states as shown in Figure 31(b).
F00R1

000R1 FR01F

F101F
0R01F FR010

0R010
0101F F10F0

FF000
010F0

0FR00

00R001F100

F0000RF100

R010R

1010R

10F01

R0101
(ack,go,req,rdy,q)
State encoding

F00R1

FR01F

FR010

0R010

F10F0

FF000
010F0

0FR00

00R001F100

F0000RF100

R010R

1010R

10F01

R0101
(ack,go,req,rdy,q)
State encoding

(a) (b)Figure 31: (a) SG and (b) RSG for the SCSI protocol controller.The SEL introduced in Chapter 2 has non-deterministic behavior, namely input choice,so its timed ER structure is not con
ict-free and the RSG cannot be found using Algo-rithm 3.5.1. Instead, the timed ER structure for the SEL is converted to an orbital netusing Algorithm 3.3.1 which is further transformed to satisfy the single behavior placerequirement. The resulting net is then analyzed using the partial order timing analysis al-gorithm to �nd the reduced state graph. The resulting RSG for the SEL contains 53 states.A SG generated ignoring all the timing information contains 256 states. As shown in thenext chapter, the smaller RSG produces a signi�cantly smaller circuit implementation.

CHAPTER 3. TIMING ANALYSIS 63AppendixThe usage of these timing analysis algorithms within ATACS is described in this appendix.After a timed HSE speci�cation and has been compiled to a timed ER structure using thecommand compile and/or loaded using the command loader, several checks are done to makesure the timed ER structure is well-formed. The �rst is a liveness test which checks thatevery cycle has at least one arc which is initially marked. The second is a connectivity testwhich checks that the graph is strongly connected. If the graph is not strongly connected,the command connect can be used to attempt to add rules to make it strongly connected.The third check is a safety test which checks that every event exists in a cycle that includesjust one initially marked arc. If any check fails, an error report can be obtained while inverbose mode to help track down the cause of the error.After obtaining a well-formed timed ER structure, the program then attempts to elimi-nate any redundant rules. If the program detects that the timed ER structure is con
ict-free,it uses Algorithm 3.2.4 to remove redundant rules. In either case, rules which have alterna-tive paths that make them redundant as described in Section 3.1 are removed. In verbosemode, a list of redundant rules is stored to the �le named h�lenamei.rr. An example of sucha �le is shown in Figure 32 for the SCSI protocol controller.< go+/1,go-/1,0,[20,50] >< go-/1,go+/1,1,[20,50] >< ack+/1,ack-/1,1,[20,50] >< ack-/1,ack+/1,0,[20,50] >< q-/1,rdy-/1,0,[0,5] >Figure 32: Redundant rules from the SCSI protocol controller.The program is now ready to �nd the RSG. If the program detects that the timed ERstructure is con
ict-free, it uses Algorithm 3.5.1. Otherwise, the timed ER structure isconverted to an orbital net using Algorithm 3.3.1 which is further transformed to satisfythe single behavior place requirement. The resulting net is then sent to the program ORBITSwritten by Tom Rokicki [60] to apply the partial order timing analysis algorithm to �ndthe RSG. The resulting RSG is then read back into ATACS for the rest of the synthesisprocedure as described in the next chapter. In verbose mode, the RSG is stored to the �lenamed h�lenamei.rsg. An example of such a �le is shown in Figure 33 for the SCSI protocolcontroller's reduced state graph depicted in Figure 31(b).

CHAPTER 3. TIMING ANALYSIS 64SG:STATEVECTOR:INP go INP ack q req rdySTATES:011F00F10RRFF01RF0011F00FR00011000FF00R0000R0FR0100RR10F101001R100R110FF0000F000 Figure 33: Reduced state graph for the SCSI protocol controller.There are several commands which are related to timing analysis. First, the commandsi sets the timing constraints on all rules to h0;1i and turns o� all timing analysis, so as toproduce speed-independent designs. The command cycles hnumberi can be used to changethe number of cycles that the graph is unrolled when �nding the worst-case time di�erences.The command �ndtd �nds all time di�erences for the current number of cycles and storesthem to the �le named h�lenamei.td. Similarly, the command �ndwctd �nds all estimatesof the worst-case time di�erence and stores them to the �le named h�lenamei.wctd. Thecommands shower and printer display and print the cyclic constraint graph or orbital netfor the current design. Similarly, the commands showrsg and printrsg display and printthe reduced state graph for the current design. The command storeer can be used to storethe current timed ER structure to a �le after modi�cations have been made to it such asremoving redundant rules. Finally, it is possible to load a reduced state graph directly forsynthesis in the form depicted in Figure 33 using the command loadrsg.

Chapter 4Synthesis : : :shifts up and down, everybody knows its wrong|skinny puppySynthesis is the process of transforming a speci�cation into a circuit implementation. Oursynthesis procedure begins with a RSG representation derived using the timing analysisalgorithms described in the previous chapter from which a hazard-free timed circuit imple-mentation is generated using only basic gates such as AND gates, OR gates, and C-elements.From a RSG there are several di�erent approaches that could be used to obtain a gate-leveltimed circuit implementation. The �rst approach is to use a traditional boolean minimiza-tion technique directly. We demonstrate, however, that when mapping the resulting imple-mentation to basic gates, it may result in a hazardous implementation. Another approachis to split the design of the rising and falling transitions to obtain a generalized C-elementimplementation [44] and decompose it to basic gates. This technique alleviates some ofthe hazard problems, but we demonstrate that it may still be hazardous when mapped tobasic gates. We take a standard C-implementation approach in which each rising and fallingregion for each output signal is implemented using a single cube, or AND gate, which mustsatisfy certain correctness constraints. A covering problem is setup and solved to �nd anoptimal implementation for each region. When all the regions are merged, the resultingtimed circuit implementation is guaranteed to be a hazard-free at the gate-level.65

CHAPTER 4. SYNTHESIS 664.1 Sum-of-Products ImplementationAfter obtaining a RSG, we could apply a traditional Boolean minimization technique to�nd an implementation. Using this technique, the state space is partitioned into an on-set,an o�-set, and a don't-care-set. Then, a Boolean minimization program, such as espresso[10] can be used to �nd the optimal sum-of-products representation. For our designs, aminimization problem would be setup for each output signal u with the on-set containingeach state s in which the signal is enabled to rise or is stable high (i.e., s(u) = R ors(u) = 1), the o�-set containing each state s in which the signal is enabled to fall or isstable low (i.e., s(u) = F or s(u) = 0), and the don't-care-set containing all unreachablestates (i.e., �I[O � �).Applying this technique to the signal out2o from the SEL results in the Boolean equation:out2o = (datai ^ sel2i ^ :out2i)_ (datao ^ out2o) _ (:xfero ^ out2o)In order to guarantee correctness, Chu [17] and Meng [47] assumed that the logic equationfor each output signal could be implemented directly with a single complex atomic gate. Inother words, each signal is built with an instantaneous function block with a delay elementconnected to its output. Unfortunately, if the equation is mapped to basic gates and thedelays of these gates are considered individually, the implementation may be hazardous.For example, the equation for out2o could be implemented directly as a sum-of-products asshown in Figure 34. If the 3-input AND and OR gates (gates 1 and 4) are assumed to havea delay of h2; 5i while the 2-input AND gates (gates 2 and 3) have a delay of h2; 3i, thisimplementation is hazard-free. However, if the upper bound of the delay on the 2-inputAND gates increases to 4 or more time units, this circuit is now hazardous. The segmentof the state graph to the left illustrates a sequence of transitions which cause a hazard.Essentially, after gate 1 has caused out2o to rise, it has the potential of being shut o� againbefore gates 2 or 3 can come on to hold the state.In order to solve this problem, Lavagno [38] �rst mapped the logic equations ignoringhazards using standard synchronous techniques, then added delay elements where neces-sary to remove any potential hazards. This technique, however, not only adds additionaloverhead in terms of area and delay, but the resulting circuits may not be very reliable dueto the di�culty in designing delay elements with accurate timing.

CHAPTER 4. SYNTHESIS 67
out2i

datai
sel2i

out2o
datao

11RR0001100

1101000110R

sel2i↑

110F0R01001

11000R01001

sel2i↓

〈 xferi, datai, sel1i, sel2i, out1i, out2i, xfero, datao, selo, out1o, out2o 〉

11010R01F01

out2o↑

selo↓ xfero

1

2

3

4Figure 34: A hazardous sum-of-products implementation of out2o from the SEL.4.2 Generalized C-ImplementationAnother implementation strategy originally proposed by Martin [44] is to use generalized C-elements as the basic building blocks. This is also the technique used in our earlier work [52].In this technique, the implementation of the set and reset of a signal are decoupled. Thebasic structure is depicted in Figure 35(a) in which the upper sum-of-products representsthe logic for the set, the lower sum-of-products represents the logic for the reset, and theresult is merged with a C-element. This can be implemented directly in CMOS as a singlecompact gate with weak-feedback as shown in Figure 35(b) or as a fully-static gate as shownin Figure 35(c).Using a procedure similar to the one described in [52], we obtain a generalized C-elementimplementation for the signal out2o shown in Figure 36. While this could be implementedwith a single generalized C-element, a gate-level implementation would be composed of a3-input AND gate, a 2-input AND gate, and a C-element. Although this implementation nolonger has the hazard associated with the RSG fragment in Figure 34, it now has a hazardillustrated with the state graph shown to the left in which the reset AND gate glitcheswhile the output is stable low. For the speci�ed delays, it can be shown that the hazarddoes not propagate to the output, but given appropriate delays this hazard may propagate[5]. To address this problem, after a generalized C-element implementation is produced anddecomposed to basic gates, the design could be back-annotated with delays from the gate

CHAPTER 4. SYNTHESIS 68
C

s00
s01

s10
s11

¬r00
¬r01

¬r10
¬r11

u
s00

s01

s10

s11

¬r00

¬r01

¬r10

¬r11
weak

s00

s01

s10

s11

¬r00

¬r01

¬r10

¬r1l
u

¬r00 ¬r01

¬r10 ¬r11

s00

s10

s01

s11

u

(a) (b) (c)

setu

resetuFigure 35: (a) The generalized C-element con�guration with (b) weak-feedback and (c)fully-static CMOS implementations.library, and the circuit could be veri�ed. While this may often work, it is not clear what todo in the cases in which a hazard does exist. Also, a hazard is a spurious transition whichwastes power and does no useful work. In a power e�cient implementation, it is desirableto have logic which is hazard-free both internally and externally.
F100101F010

FF0010100F0

datao↓

0000F0F0000

R000F000000

xfero↓

…

〈 xferi, datai, sel1i, sel2i, out1i, out2i, xfero, datao, selo, out1o, out2o 〉

C out2o

datai
sel2i
xfero

xfero
datao

0Figure 36: A hazardous gate-level implementation of out2o from the SEL.

CHAPTER 4. SYNTHESIS 694.3 Standard C-ImplementationTo avoid the hazard concerns discussed above, our approach obtains a gate-level imple-mentation by �rst decomposing the design into a set of rising and falling regions whichare each implemented using a single cube. While the general structure of the standardC-implementation shown in Figure 37 is similar to the generalized C-element structure,each cube in the set or reset block must satisfy certain constraints to guarantee that themerged implementation is a gate-level hazard-free circuit. The approach is conservative inthat timing analysis may show that the decomposed generalized C-element implementationis su�cient, but the overhead required tends to be small to get a safe implementation thatis free of internal hazards.
C

s00
s01

s10
s11

r00
r01

r10
r11

u

setu

resetuFigure 37: The standard C-implementation.4.3.1 Excitation Regions and Quiescent StatesIn order to obtain a standard C-implementation, the RSG is decomposed for each outputsignal into a collection of excitation regions. An excitation region for the output signal uis a maximally connected set of states in which the signal is enabled to change to a givenvalue (i.e., s(u) = R or s(u) = F). If the signal is rising in the region (i.e., s(u) = R), itis called a set region, and the kth set region for a signal u is denoted ER(u "; k). Similarly,if the signal is falling in the region (i.e., s(u) = F), it is called a reset region, and it isdenoted ER(u #; k). Typically, di�erent excitation regions correspond to di�erent outputsignal transitions in a high-level speci�cation. For example, there are two set regions forthe signal xfero in the SEL which correspond to the two instances of xfero " in the timedHSE speci�cation in Figure 5.

CHAPTER 4. SYNTHESIS 70For each signal u, there are two sets of stable, or quiescent states. There is the set ofstates where the signal u is stable high denoted QS(u ") (i.e., QS(u ") = fs 2 � j s(u) = 1g),and the set where it is stable low denoted QS(u #) (i.e., QS(u #) = fs 2 � j s(u) = 0g).4.3.2 Correct CoversWe assume each excitation region will be implemented with a single AND gate, or cube,corresponding to a cover of the excitation region. The cover of a set region C(u "; k) (ora reset region C(u #; k)) is a set of states for which the corresponding cube in the imple-mentation evaluates to one. In order for a cover to lead to a hazard-free implementation,it must satisfy certain correctness constraints [7, 54]. These constraints guarantee that anygate in the implementation only changes when it is actively driving the output signal tochange. This ensures that the transition of the gate is acknowledged.First, a correct cover needs to satisfy a covering constraint which says that the reachablestates in the cover must include the entire excitation region but must not include any statesoutside the union of the excitation region and associated quiescent states, i.e.,ER(u�; k) � [C(u�; k)\ �] � [ER(u�; k)[Q(u�)]where *" indicates either \"" for set regions or \#" for reset regions.Second, the covers of each excitation region must also satisfy an entrance constraint toensure hazard-freedom. This constraint says that the cover must only be entered throughexcitation region states, i.e.,�(s; s0) 2 � ^ s 62 C(u�; k)^ s0 2 C(u�; k)�) s0 2 ER(u�; k)To optimize the implementation, a single AND gate can be allowed to implement mul-tiple regions. First, the procedure �nds AND gate covers for each excitation region usingmodi�ed correctness constraints. The covering constraint is modi�ed to allow the cover toinclude states from other excitation regions, i.e.,ER(u�; k) � [C(u�; k)\ �] � "[l ER(u�; l)[Q(u�)#The entrance constraint is similarly modi�ed to allow the cover to be entered from anycorresponding excitation region state, i.e.,�(s; s0) 2 � ^ s 62 C(u�; k)^ s0 2 C(u�; k)�) s0 2[l ER(u�; l)

CHAPTER 4. SYNTHESIS 71An additional constraint is also now necessary to guarantee that an AND gate either coversall of an excitation region or none of it, i.e.,ER(u�; l) 6� C(u�; k)) ER(u�; l)\ C(u�; k) = ;Second, after the covers are found for each excitation region, a disjoint set of these coversmust be selected to cover all regions. It is possible that no such set exists. In this case, theamount of gate sharing must be limited. A more general framework for the sharing of gatesacross signal networks is described in [37].4.4 Finding Enabled Cubes and Trigger CubesSince each region is implemented with a single cube, to obtain a hazard-free implementation,all literals in the cube must correspond to signals that are stable, i.e., constant throughoutthe excitation region. Otherwise, the single-cube cover would not cover all excitation regionstates. When a single-cube cover exists, an excitation region ER(u�; k) can be su�cientlyapproximated using a cube called an enabled cube, denoted EC(u�; k), de�ned on each signalv as follows: EC(u�; k)(v)� 8>>><>>>: 0 if 8s 2 ER(u�; k) [val(s(v)) = 0]1 if 8s 2 ER(u�; k) [val(s(v)) = 1]X otherwiseIf a signal has a value of 0 or 1 in the enabled cube, the signal can be used in the cubeimplementing the region. A cube, such as the enabled cube, implicitly represents a set ofstates in the obvious way. The set of states represented by the enabled cube is always asuperset of the set of excitation region states (i.e., EC(u�; k) � ER(u�; k)).Each cube in the implementation is composed of trigger signals and context signals. Foran excitation region, a trigger signal is a signal whose �ring can cause the circuit to enterthe excitation region while any non-trigger signal which is stable in the excitation region canpotentially be a context signal. The set of trigger signals for an excitation region ER(u�; k)can also be represented with a cube called a trigger cube TC(u�; v) de�ned as follows foreach signal v:TC(u�; k)(v)� 8<: val(s0(v)) If 9s; s0 h(s v! s0) ^ (s 62 ER(u�; k))^ (s0 2 ER(u�; k))iX otherwise

CHAPTER 4. SYNTHESIS 72In order for our synthesis procedure to generate a circuit, the cover of each excitationregion must contain all its trigger signals (i.e., C(u�; k) � TC(u�; k)). Since only stablesignals can be included, a necessary condition for our algorithm to produce an implementa-tion is that all trigger signals be stable (i.e., EC(u�; k) � TC(u�; k)). If a trigger signal isnot stable then we must either constrain concurrency [47], add state variables [37], or use amore general algorithm [7].The enabled cubes and trigger cubes are easily found with a single pass through theRSG. Table 1 shows the enabled cubes and trigger cubes corresponding to all the excitationregions in the SEL.Table 1: Enabled cubes and trigger cubes for the SEL.u�; k EC(u�; k) TC(u�; k)xfero "; 0 11X0100X010 XXXX1XXXXXXxfero "; 1 110X010X001 XXXXX1XXXXXxfero #; 0 0X00XX10000 0XXXXXXXXXXdatao "; 0 10000000X00 1XXXXXXXXXXdatao #; 0 11X010X1010 XXXX1XXXXXXdatao #; 1 110X01X1001 XXXXX1XXXXXselo "; 0 1000000X000 1XXXXXXXXXXselo #; 0 11100001110 XXXXXXXXX1Xselo #; 1 11010001101 XXXXXXXXXX1out1o "; 0 11100001100 X11XXXXXXXXout1o #; 0 1XX01010010 XXXXXX10XXXout2o "; 0 11010001100 X1X1XXXXXXXout2o #; 0 1X0X0110001 XXXXXX10XXXhxferi; datai; sel1i; sel2i; out1i; out2i; xfero; datao; selo; out1o; out2oi4.5 Finding an Optimal Correct CoverOur procedure to �nd a correct cover begins with a cube consisting only of the trigger signals(i.e., C(u�; k) = TC(u�; k)). If this cover contains no states that violate either the coveringor entrance constraint, we are done. This, however, is often not the case, and context signalsmust be added to the cube to remove any violating states. For each violation detected, theprocedure determines the choices of context signals which would exclude the violating state.Finding the smallest set of context signals to resolve all violations is a covering problem.

CHAPTER 4. SYNTHESIS 73Due to the implication in the entrance constraint, inclusion of certain context signals mayintroduce additional violations which must be resolved. Therefore, the covering problem isbinate.To solve our binate covering problem, we create a covering and closure (CC) table [28]for each region. While other techniques exist to �nd binate covers such as those describedin [36, 11], the CC table is simple and facilitates presentation. There is a row in the CCtable for each context signal, and there is a column for each violation and each violationthat could potentially arise from a context signal choice. An entry in the table contains across (�) if the context signal resolves the con
ict. An entry in the table contains a dot (�)if the inclusion of the context signal would require the violation to be resolved.To construct the table for a given excitation region ER(u�; k), the procedure �rst �ndsall states in the initial cover (i.e., TC(u�; k)) which violate the covering constraint. In otherwords, a state s in TC(u�; k) is a violating state if the signal u has the same value but isnot enabled (i.e., s(u) = 0 for a set region or s(u) = 1 for a reset region), is enabled inthe opposite direction (i.e., s(u) = F for a set region or s(u) = R for a reset region), oris enabled in the same direction but the state is not in the current excitation region (i.e.,s(u) = R for a set region or s(u) = F for a reset region and s 62 EC(u�; k)). If a violationexists, the procedure adds a new column to the table with a cross in each row correspondingto a context signal v that would exclude the violating state (i.e., EC(u�; k)(v) = :val(s(v))).The next step in the table construction is to �nd all state transitions which violatethe entrance constraint in the initial cover or may violate it for a particular context signalchoice. For any state transition s v! s0, this is possible when s is not in the excitation region(i.e., s 62 EC(u�; k)), s0 is a quiescent state (i.e., s0(v) = 1 for a set region and s0(v) = 0for a reset region), s0 is in the initial cover (i.e., s0 2 TC(u�; k)), and v excludes s (i.e.,EC(u�; k)(v) = :val(s(v))). For each entrance constraint violation or potential violationdetected, the procedure adds a new column to the table again with a cross in each rowcorresponding to a context signal that would exclude the violating state. If the signal vin the state transition is a context signal, the state s0 only needs to be excluded if v isincluded in the cover. This implication is represented with a dot being placed in the rowcorresponding to the signal v.If a violation is detected for which there is no context signal to resolve it, the CC tableconstruction fails. In this case, as with non-stable trigger signals, it is necessary to constrainconcurrency, add state variables, or use a more general algorithm.

CHAPTER 4. SYNTHESIS 74In a single pass through the RSG, all the CC tables can be constructed. When im-plementing (out2o #; 0) from the SEL, no covering constraint violations are detected. Thisis not surprising since our complex-gate implementation of this region only contained thetrigger signals xfero and :datao. There are, however, entrance constraint violations whichare shown in the CC table in Table 2.Table 2: CC table for (out2o #; 0) from the SEL.Signal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15xferi � � � �sel1i � � � � � � � � � � �out1i � � � � � � � � � � � � �out2i � � � � � � � � � � � � � � �xferodataoseloout1o � � � � � � �out2o � � � � � � � � � � � � � � �The last step is to �nd the smallest set of context signals to implement each excitationregion by solving the CC tables that are constructed. The CC tables are solved usingstandard reduction rules [28] given below:Rule 1: (Select essential rows) If a column contains only a single cross and blanks elsewhere,then the row with the cross must be selected. The row is deleted together with allcolumns in which it has crosses.Rule 2: (Remove columns with only dots) If a column has only a single dot and blankselsewhere, the row containing the dot must be deleted together with all columns inwhich it has dots.Rule 3: (Remove dominating columns) A column Cj dominates a column Ci if it has all thecrosses and dots of Ci. If Cj dominates Ci, then Cj is deleted.Rule 4: (Remove dominated rows) A row Ri dominates a row Rj if it (a) has all the crossesof Rj; and (b) for every column Cp in which Ri has a dot, either Rj has a dot inCp or there exists a column Cq in which Rj has a dot, such that, disregarding theentries in rows Ri and Rj , Cp dominates Cq. If Ri dominates Rj, then Rj is deletedtogether with all columns in which it has dots.

CHAPTER 4. SYNTHESIS 75Rule 5: (Remove rows with only dots) If a row only has dots, then the row is deleted togetherwith all columns in which it has dots.It is important to note that when applying rule 4, two rows may mutually dominate eachother. These ties are resolved by picking the rule that provides symmetry between di�erentregions of the same signal. This symmetry often leads to gates being shared betweenregions. The table is completely solved when all columns are eliminated, and the contextsignals are those corresponding to the essential rows selected by Rule 1. While in practicethese reduction rules are often su�cient to solve the table, some tables may be cyclic. Tosolve the cyclic table, we use a branch and bound method.For the SEL, the CC table for (out2o #; 0) is reduced to the one shown in the left �vecolumns of Table 3 after removing dominating columns. The CC table is further reduced tothe single rightmost column of Table 3 after removing dominated rows. This leaves us witha choice of using either out2i or out2o as a context signal. In this case, they are equivalent,and we arbitrarily select out2i.Table 3: CC table for (out2o #; 0) from the SEL after removing dominating columns.Signal 9 11 12 14 14xferisel1i �out1i � � �out2i � � � � �xferodataoseloout1o � �out2o � � � � �For the SEL, we derive a gate-level timed circuit implementation with 27 literals shownin Figure 38(a). If all the timing information is ignored, we obtain a gate-level speed-independent circuit implementation with 44 literals shown in Figure 38(b). Besides beingnearly 40 percent smaller, the timed circuit has reduced latency since it requires gates withat most 3-inputs while the speed-independent circuit requires many large gates includingone with 6-inputs.

CHAPTER 4. SYNTHESIS 76
C

C C

C C

datao selo

out2o

xferi

xferi

xferi
datai

datai datai
sel1i sel2i

out1i

out1i

out2i

out2i

xfero

xfero

xfero xfero

xfero xfero
datao

xferi

datao

out1o

out1o
out2o

out1i

out2i

(a) (b)

C

C

C C

C

out1o

xferi

xferi

datai

datai datai

sel1i

sel1i

sel2i

sel2i

out1i

out1i

out2i

out2i

xfero

xfero

xfero

xfero

out1i out2i
xfero

datao

datao

datao

datao

datao

selo

selo

selo

selo selo

out1o

out1o

out1o

out2o

out2o

out2o

out2o

out1oout2o

xferi

Figure 38: Gate-level (a) timed and (b) speed-independent circuits for the SEL.4.6 Synthesis ResultsOur synthesis results are tabulated in Table 4. In addition to the SEL described above,another design of the SEL (SEL2) is given in the table in which the selection of the outputport is performed using a single conditional signal rather than dual-rail encoding and threesignal wires. Another example in the table is a memory management unit (MMU) whichwas originally designed speed-independently in [50]. The last two examples, a DRAMcontroller (DRAM) and the target-send burst-mode portion of a SCSI controller (TSBM),were originally speci�ed using burst-mode �nite-state machines in [58].First, we compared the literal counts (Lit) for the gate-level timed circuits derived usingthe generalized C-element (gC) technique and our standard C-implementation techniques.Our results show only about a 10 percent increase in literal count for generating a safeimplementation that has no internal hazards. For the �rst three examples, the timed imple-mentations are compared with those produced by SYN and SIS in terms of area representedby transistor count and delay represented as ratio of fanout of four inverter delays. Thetimed implementations are about 40 percent smaller and faster than the speed-independentones produced by SYN. Compared with SIS, the area gains are about the same, but theimprovement in delay is now about 50 percent. The table also gives the number of reach-able states (j� j) for timed and other methods showing up to two orders of magnitude lessstates in the timed case. In fact, due to the large state space size of the MMU example,SIS runs out of memory during synthesis. The last two examples are compared with the

CHAPTER 4. SYNTHESIS 773D method with the 3D speci�cations and results taken from [81] assuming a 0.3ns inverterdelay in a 0:8�m CMOS process. For these designs, our timed circuits show about a 30percent improvement in area (comparing literal count) and delay.Table 4: Synthesis results.Timed Other Design MethodologiesgC ATACS SYN SIS 3DEx. j � j Lit Lit Area Del j � j Area Del Area Del Lit DelSEL 53 25 27 104 5 256 160 7 158 11 n/a n/aSEL2 36 19 21 76 5 128 108 6.5 130 11.5 n/a n/aMMU 187 56 62 210 4.5 23,296 412 10 out of mem n/a n/aDRAM 79 38 38 110 5.5 n/a n/a n/a n/a n/a 46 7TSBM 113 32 33 140 4.5 n/a n/a n/a n/a n/a 58 7.5

CHAPTER 4. SYNTHESIS 78AppendixEach of the synthesis steps described in this chapter has been implemented within ATACS.After generating a RSG using the commands described in the previous chapters' appendices,the next step of synthesis is to use the command �ndreg to �nd the excitation regions andtrigger signals, represented using enabled and trigger cubes. In verbose mode, the enabledand trigger cubes are output to a �le named h�lenamei.es. An example of such a �le forthe SCSI protocol controller is shown in Figure 39. The actual regions can be displayed orprinted using the command printreg which generates a �le for each region and each set ofquiescent states which can be viewed using Tom Rokicki's parg program. While �nding theregions, if a trigger signal is found to not be stable in the excitation region, an exception israised which tells which rules are not stable, or persistent. It may be possible to solve thispersistency problem by adding additional rules to the speci�cation. The command addpersattempts to �nd such rules.REGIONS:STATEVECTOR:INP go INP ack q req rdyEVENT: ENABLED CUBE: TRIGGER CUBE+q : 0X010 : 0XX1X�q : 01101 : XXXX1+req : X0000 : X0XX0�req : 01110 : X11XX+rdy : 01100 : XXX0X�rdy : 1X001 : 1XXXXFigure 39: Enabled cubes and trigger cubes from the SCSI protocol controller.The next step of synthesis is to �nd the con
icts and generate the CC tables us-ing the command �ndconf. In verbose mode, the CC tables are written to a �le namedh�lenamei.crt. An example of a CC table from the SCSI protocol controller is shown inFigure 40. It is possible that no context signal can be found to solve a con
ict, and anexception occurs. To solve this problem or a persistency problem, the command exact canbe used to switch to a more general algorithm which is described in [7]. Essentially, thisalgorithm allows multiple-cubes to be used to cover a single excitation region.After the tables are generated, they are solved using the command �ndcover. In ver-bose mode, a list of context signals which need to be added are stored to a �le namedh�lenamei.cr. If the table is cyclic, an exception occurs. A heuristic routine to solve cyclic

CHAPTER 4. SYNTHESIS 79CONTEXT RULE TABLES:STATEVECTOR:INP go INP ack q req rdyContext Rule Table for rdy+1F00F: ~go q ~rdyFF000: ~go q1000F: ~go ack q ~rdyF00R0: ~go ack q0F000: q000R0: ack q Figure 40: CC table from the SCSI protocol controller.tables has been implemented which arbitrarily selects one signal to add as a context signalthen reattempts to solve the table. This routine is invoked using the command resolve.Interfaces to other synthesis systems is also provided, and they were used to do thecomparisons in this chapter. The commands sis and syn change modes between usingATACS, SIS, and SYN for synthesis. The command storeg stores a graph �le which can beused as input to SIS. The command storesg stores a SG �le which can be used as input toSYN. The command storenet stores a circuit net �le which can be read into SYN.Using the command storeprs, the �nal synthesized circuit is output as production rules[44] which are stored to a �le named h�lenamei.prs. The command gatelevel can be usedto toggle between �nding a generalized C-implementation and the gate-level standard C-implementation. The production rules for the SCSI protocol controller are shown in Fig-ure 41. Each production rule consists of a type, a signal name, and a guard. The guardis a conjunction of signals which represents a cube in the implementation. If the type andsignal name of the production rule are of the form +s, the guard represents a cube fromthe set network for the signal s. If they are of the form �s, it is from the reset network. Ifthere is no type given, then the guard represents a combinational implementation. If theyare of the form ~s, then the guard represents an inverted combinational implementation.[+q: (~go & req)][�q: (rdy)][+req: (~ack & ~rdy)][�req: (ack & q)][+rdy: (q & ~req)][�rdy: (go)] Figure 41: Production rules from the SCSI protocol controller.

Chapter 5Technology MappingCome, and take choice of all my library|William ShakespeareThe previous chapter introduced an automatic procedure for the synthesis of gate-leveltimed circuits and demonstrated that timed designs can be signi�cantly smaller and fasterthan designs generated using other asynchronous design methodologies. These timed de-signs, however, are synthesized without considering explicitly the available gate library. Inparticular, these designs may require gates with a large number of inputs which is not prac-tical for existing technologies. In CMOS, for example, gates with more than four transistorsin series are typically considered to be too slow, and they must be decomposed. While ina synchronous design high-fanin gates can be decomposed in an arbitrary manner, in anasynchronous design decomposition must be done in such a way as to not introduce haz-ards. This chapter addresses the problem of �nding hazard-free mappings of timed circuitsto limited-fanin gate libraries.It has been shown for fundamental mode asynchronous circuits that synchronous tech-nology mapping techniques can be applied with small modi�cations to account for hazards[65]. The fundamental-mode assumption, however, limits the concurrency that can be spec-i�ed so these results cannot be applied to our timed circuit design style.Technology mapping of speed-independent circuits has also been addressed [6, 64, 7].The techniques employed use heuristics to investigate various decompositions, and whennecessary add additional connections called acknowledgment wire forks to restore correctnessto the decomposed implementation. These forks increase both the fanin and fanout of thegates in the implementation degrading the performance. These techniques also do not take80

CHAPTER 5. TECHNOLOGY MAPPING 81timing into account and would produce unnecessarily conservative and possibly incorrecttimed circuit implementations.To our knowledge, the only procedure for technology mapping of asynchronous circuitsthat takes timing into account is the one within Berkeley's SIS [38]. We have shown in theprevious chapter that the implementations that are produced by SIS can be ine�cient interms of circuit area and delay due to the cost of the delay elements that must be addedto remove hazards and the fact that timing information is neglected until late in the designprocess.In this chapter, we describe an automatic procedure to map timed circuits to practicalgate libraries without needing to add any delay elements. Beginning with a speci�cation,an unlimited-fanin circuit implementation, and a gate library description, an automaticprocedure is employed to investigate possible decompositions of any gates larger than thosefound in the gate library. Timing information is utilized to signi�cantly reduce the sizeof the search space. From this reduced search space, each decomposition is employed toguide the resynthesis of a hazard-free timed circuit which is then mapped to the given gatelibrary.5.1 Gate LibrariesThe general structure of our implementations is in the from of a standard C-implementationas depicted in Figure 37. In this structure, the upper sum-of-products represents the logic forthe set, the lower sum-of-products represents the logic for the reset, and the result is mergedwith a C-element. When available in the gate library, this structure can be implementeddirectly in CMOS as a single compact generalized C-element with weak-feedback as shownin Figure 35(b) or as a fully-static generalized C-element as shown in Figure 35(c) [44].When these complex gates are not available, the standard C-implementation structure isconstructed using combinational gates and a C-element. If the library includes AND-OR-INVERT blocks, the sum-of-products may be mapped to them, otherwise discrete ANDgates and OR gates must be used. We require that the given gate library contain at least2-input AND gates, OR gates, and C-elements with arbitrary inverted inputs. The presenceof AND-OR-INVERT blocks and generalized C-elements is optional.Since delays for transitions on output signals must be speci�ed before the gates gener-ating them are produced, it is necessary to have a good estimate of the delay of these gates

CHAPTER 5. TECHNOLOGY MAPPING 82to produce e�cient timed circuits. The solution that we propose is to use a delay of 0 forthe lower bound and an automatic analysis of the given library to derive the upper boundof the delay from the largest gate structure of the form shown in Figure 37 that can be builtfrom the limited-fanin gates found in the library. Using this technique to estimate delays,however, means that when a network of gates for an output signal includes a high-fanin gatewhich must be decomposed to multiple levels of logic, the delay associated with transitionson this output signal may be larger than originally estimated. This increase in delay mustbe re
ected in the speci�cation, and it may change the resulting implementation. Since de-composition techniques for speed-independent designs do not take this into consideration,they may produce incorrect circuits when naively applied to timed circuits.5.2 DecompositionGiven an orbital net, an arbitrary gate-level timed circuit implementation, and a gate li-brary, the goal of technology mapping is to implement the circuit using only the limitedfanin gates found in the given library optimized to some cost function such as area or delay.The technology mapping procedure �rst decomposes each gate in the initial implementationwith a fanin higher than that found in the gate library. Next, the partitioning step triviallyidenti�es each signal network as a cone of logic. Finally, the matching and covering stepis used to bind portions of each signal network to gates found in the library to producean e�cient implementation. It was shown in [64] that for speed-independent circuits thedecomposition of high-fanin OR gates from the standard C-implementation structure canbe done safely in any arbitrary manner, and that the synchronous matching/covering tech-niques can be used with minor modi�cations. These results can be easily extended to ourclass of timed circuits. However, for the AND gates, or cubes, care must be taken whendecomposing them so as not to introduce hazards. Therefore, it is the decomposition ofthese cubes which the remainder of this section addresses.Our procedure to decompose each high-fanin AND gate searches for a decompositionthat uses the minimum number of logic levels. This is accomplished by adding new signalsto the original speci�cation which can be used to decompose each high-fanin gate withoutchanging the concurrency originally speci�ed. Each decomposition results in a modi�edspeci�cation which is then resynthesized to obtain a new timed circuit implementation thatis guaranteed to be hazard-free. This decomposition procedure �rst attempts to decompose

CHAPTER 5. TECHNOLOGY MAPPING 83the circuit using one new signal for each high-fanin gate. If no such decomposition can befound that successfully decomposes all gates to ones found in the given library, then thespeci�cation which results in the implementation that requires the smallest fanin gates istaken as the new starting point. Using this new speci�cation, an additional signal is addedto decompose each remaining high-fanin gate. This procedure terminates either when allhigh-fanin gates have been successful decomposed into multi-level logic implementations,or when the minimum fanin of the best implementation and the number of gates needingto be decomposed is no longer decreasing. In the remainder of this section, we explain ourdecomposition procedure in more detail.
Readyo↑

DReqo↓

〈0, 5〉b

DAcki↑

〈0, 5〉b

DReqo↑

〈20, ∞〉b

DSendi↑

〈0, 5〉b

DAcki↓

〈0, 5〉b

gC+
+

+
+

+

+
+

DReqo

DReqoC

DSendi
DAcki

DSendo
Readyo

DRelo
Reqo

Doneo
Emptyo

Readyo

DSendi
DAcki

DSendo
Readyo

DRelo
Reqo

Doneo
Emptyo

(a)

(b)

(c)Figure 42: (a) Part of the orbital net for the tsbm, (b) a standard C-implementation, and(c) a generalized C-implementation of the signal DReqo.5.2.1 Searching the Decomposition SpaceA decomposition of a cube is a partition of the set of trigger and context signals into twosubsets: an extracted set and a reduced set. The signals in the extracted set are used astrigger signals for a transition on a new signal that is added to decompose the high-faningate. For a particular cube composed of n signals, there are 2n�1 di�erent decompositions.For example, the 8-input AND gate in Figure 42(b) which must be decomposed has 255di�erent decompositions.Fortunately, we do not need to examine all of them as many decompositions which never

CHAPTER 5. TECHNOLOGY MAPPING 84lead to a successful decomposition can be safely eliminated from consideration. When twosignal transitions are ordered, if the signal with the later transition is extracted as a triggersignal for the new signal transition, the signal with the earlier transition need not also beextracted. The earlier transition, if extracted, would not be a trigger signal for the newtransition as two trigger signals are never ordered. If the signal with the earlier transitionis needed in the implementation of the new signal transition, it is as a context signal.We use the above intuition in two ways. First, since all trigger signal transitions occurlater than any context signal transition, any decomposition with an extracted set thatcontains both trigger and context signals from the original gate is eliminated. Second,a timing analysis algorithm such as the one described for deterministic speci�cations inChapter 3 or for more general speci�cations in [35] is used to determine the order of contextsignal transitions. Any decomposition composed of two context signals that have orderedtransitions is eliminated. By taking advantage of ordering information, the number ofpossible decompositions for the 8-input AND gate from the tsbm is reduced from 255 toonly 23.5.2.2 Decomposition Through ResynthesisFor each signal which needs to be decomposed, our procedure selects a decomposition fromthe set of potential decompositions that remains after applying the criterion described inthe previous subsection. The original speci�cation is then modi�ed to incorporate a newsignal for each signal being decomposed. For simplicity, we explain here the case in whichthe orbital net does not contain conditional behavior, or choice. We describe an examplewith choice later.The procedure �rst adds a rising transition for each new signal to the orbital net. Foreach signal in the extracted set, this new transition has a behavior place in its preset fromthe corresponding transition. The timing requirements on these places have a lower bound of0 with an upper bound derived as mentioned earlier from the maximum delay for a limited-fanin standard C-implementation. If the extracted set is composed of trigger signals, theoriginal connections (places and transitions) between the corresponding transitions on thesetrigger signals and the rising (falling) transition on the signal being decomposed are replacedby a single behavior place which is added to the postset of the new rising transition. If theextracted set is composed of context signals, a constraint place with timing requirementh0;1ic is added to the postset of the new rising transition and the preset of the original

CHAPTER 5. TECHNOLOGY MAPPING 85rising (falling) signal transition. When the falling (rising) transition of a signal also needsto be decomposed, it is done with the falling transition of the new signal using the sameprocedure just described. Otherwise, the falling transition of the new signal is placedbetween all the trigger signals for the original falling (rising) transition and the originalfalling (rising) transition itself.This new speci�cation is then resynthesized using the automatic procedure from [54] toproduce a new hazard-free timed circuit implementation. If the new implementation doesnot have any high-fanin gates, the decomposition is successful. Otherwise, the proceduremust repeat using a di�erent decomposition for each remaining high-fanin gate.Returning to the tsbm, we apply our technology mapping procedure to the speci�cationand implementation shown in Figure 42 with a gate library that contains 4-input ANDgates, OR gates, C-elements, and generalized C-elements. One decomposition for the 8-input AND gate from the tsbm has an extracted set that contains only the trigger signalDSendi. The portion of the new orbital net corresponding to this decomposition is asshown in Figure 43(a). This new speci�cation results in the generalized C-implementationshown in Figure 43(b). Unfortunately, this decomposition results in an implementation thatrequires a 7-input gate. Another possible decomposition is the one with an extracted setthat contains just the context signal :DSendo which results in the portion of the orbitalnet shown in Figure 44(a). Note that the place between the new signal transition x1 "and the transition on the signal being decomposed DReqo " is now a constraint place. Thisdecomposition produces an implementation which requires only one 2-input gate (note thegeneralized C-element for x1 only requires at most two transistors in series) and one 3-inputgate shown in Figure 44(b).Various cost functions can be used to evaluate di�erent successful decompositions interms of circuit area and delay. Because the number of di�erent decompositions is usuallysmall, it may be computationally feasible for the decomposition procedure to analyze eachdecomposition, and select the one with the lowest cost that decomposes all high-fanin gatesto gates found in the library. As a heuristic to speedup the process, our procedure exits aftera decomposition is found that decomposes each high-fanin gate to the limited-fanin gatesin the given library. Although a better decomposition may exist, due to a good orderingheuristic employed, the �rst successful decomposition found is typically close to the optimalin terms of area and delay.

CHAPTER 5. TECHNOLOGY MAPPING 86

Readyo↑

x1↓

〈0, 5〉b

DAcki↑

〈0, 5〉b

DReqo↑

〈20, ∞〉b

x1↑

〈0, 5〉b

DAcki↓

〈0, 5〉b

DSendi↑

〈0, 5〉b

DReqo↓

〈0, 5〉b

gC

+

DReqoDSendi
DSendo
Readyo

DRelo
Reqo

Doneo
Emptyo

DAcki

x1

(b)

(a)Figure 43: (a) Part of the orbital net for a decomposition using a trigger signal, and (b)corresponding generalized C-implementation.

CHAPTER 5. TECHNOLOGY MAPPING 87

Readyo↑

x1↓

〈0, 5〉b

DAcki↑

〈0, 5〉b

DReqo↑

〈20, ∞〉b

x1↑ DAcki↓

〈0, 5〉b

DSendo↓

〈0, 5〉b

DReqo↓

〈0, 5〉b

(a)

(b)

gC

+

DReqoDAcki

x1

gC

+

DSendi

+

+

−

DSendo

DSendi

Readyo

DSendi↑

〈0, 5〉b

Figure 44: (a) Part of the orbital net for a decomposition using a context signal, and (b)corresponding generalized C-implementation.

CHAPTER 5. TECHNOLOGY MAPPING 885.2.3 Multi-level DecompositionsIf the procedure is not successful at decomposing all high-fanin gates by adding only oneadditional signal, the decomposition procedure is iterated to produce multiple levels oflogic. After the �rst pass, if all gates have not been successfully decomposed, the procedureselects the decomposition for each gate which requires the minimum gate size and uses itscorresponding speci�cation and implementation as input to a new iteration of the procedure.This step is repeated until an implementation is returned that either uses only gates in thelibrary or has a minimum gate size that is no longer decreasing. In the second case, ourprocedure is unable to generate an implementation using the given speci�cation and gatelibrary. To handle this situation, either the requirements in the speci�cation must be relaxedor carefully designed atomic gates may need to be added to the gate library.
gC

+

DReqo

DAcki

gC

+

+

−

DSendo

DSendi

Readyo
Readyo↑

x2↓

〈0, 5〉b

DAcki↑

〈0, 5〉b

DReqo↑

〈20, ∞〉b

x1↑ DAcki↓

〈0, 5〉b

DSendo↓

〈0, 5〉b

DReqo↓

〈0, 5〉b

DSendi↑

〈0, 5〉b

〈0, 5〉b

x2↑

x1

x2

(b)

(a)

x1↓

〈0, 5〉bFigure 45: (a) Part of the orbital net for a multi-level decomposition, and (b) correspondinggeneralized C-element implementation of DReqo with a maximum fanin of two.

CHAPTER 5. TECHNOLOGY MAPPING 89For the tsbm example, if we reduce the library size to include only 2-input gates, itcan no longer be decomposed using only one new signal. The best decomposition that theprocedure �nds is the one shown in Figure 44(b) which uses only one 3-input gate whichmust be further decomposed. The orbital net shown in Figure 44(a) is now taken as theinitial speci�cation and the circuit shown in Figure 44(b) is the initial implementation. Forthis new iteration, the procedure adds an additional signal x2 to decompose the 3-inputgate. A portion of the orbital net for a decomposition that extracts the trigger signalDSendi is shown in Figure 45(a). Synthesis applied to this net results in a generalized C-implementation shown in Figure 45(b) using three 2-input gates. Note that x1 is a contextsignal in the implementation shown in Figure 44(b), and for that reason, it can move to thegate implementing x2.5.3 ExampleWe present another example, an optimized version of the port selector (SELopt), to illustratethe application of our decomposition procedure to a circuit with conditional behavior, orchoice. Part of the original orbital net for the SELopt is shown in Figure 46(a), and theoriginal gate-level timed circuit implementation is shown in Figure 47(a). If we restrict ourlibrary to gates with a maximum fanin of 3, there is a 4-input AND gate that is shared toimplement selo and datao which must be decomposed. A new signal is added for each ofthese signals, but we concentrate on the signal x1 which is added to decompose selo. Part ofthe orbital net after a decomposition of selo is shown in Figure 46(b). This decompositionhas an extracted set which consists of the context signals :out1o and :out2o. The proceduredetects that the corresponding transitions on these context signals occur on disjoint paths,so these transitions share a single place that is added to the preset of x1 ". Since thereare two falling transitions on the signal selo, the procedure adds two falling transitions onthe new signal x1. Applying synthesis to this new speci�cation produces the decomposedimplementation shown in Figure 47(b). If we further restrict the library to only contain 2-input gates, there are three gates which must be decomposed. The resulting implementationis shown in Figure 47(c).

CHAPTER 5. TECHNOLOGY MAPPING 90
selo↑

〈600, ∞〉b

xferi↑

〈0, 18〉b

〈0, 18〉b

selo↓

〈0, 18〉b

〈0, 18〉b

〈40, 260〉b

〈0, 18〉b

out1o↑

sel1i↑

x1↓

x1↑

out1o↓

...
...

〈0, 18〉b

〈0, 18〉b

〈0, 18〉b

selo↓

out2o↑

sel2i↑

x1↓

out2o↓

...

selo↑

〈600, ∞〉b

xferi↑

〈0, 18〉b

〈0, 18〉b

〈0, 18〉b

〈40, 260〉b

out1o↑

sel1i↑

selo↓...

...

〈0, 18〉b

〈0, 18〉b

out2o↑

sel2i↑

selo↓ ...

(a) (b)Figure 46: (a) Part of the orbital net for the SELopt, and (b) part of the orbital net aftera decomposition of the signal selo.

CHAPTER 5. TECHNOLOGY MAPPING 91
C

C C out2o

xferi

xferi

datai
datai

sel1i sel2i

out1i

out2i xfero

datao datao

xfero

xferi

out1o

xferixfero
out1o
out2o

datao, selo

(a)

(b) (c)

C

C C
out2o

xferi

xferi

datai
datai

sel1i sel2i

out1i

out2i xfero

xfero xfero

xfero

xferi

out1o

xferi
xferoout1o

out2o

datao, selo

C

xferi

xferi

out1i

out2i xfero

xferi

C C out2o

dataisel1i
xfero

xfero

C C
out1o

dataisel2i
xfero

xfero

xferi datao, selo
C

xfero

out1o
out2o

xferi

Figure 47: The gate-level timed circuit implementation of the SELopt (a) before decompo-sition; after decomposition to (b) 3-input gates and (c) 2-input gates.5.4 Technology Mapping ResultsThe decomposition procedure has been used to map several examples as reported in Table 5.First, a timed version of the target-send burst-mode (tsbm) cycle of a SCSI data transfercontroller [82] is synthesized using gate libraries with a maximum fanin of 4, 3, and 2.The next three rows are implementations of the optimized port selector (SELopt) [54] alsousing libraries with a fanin of 4, 3, and 2. The last example is an asynchronous memorymanagement unit [50].The gate library used for each example contains gates with a maximum fanin size asspeci�ed in parentheses next to the name of the example. The next two columns give thenumber of gates in the standard C-implementation as well as the number of gates that arelarger than the maximum fanin and must be decomposed. All high-fanin gates were success-fully decomposed. The area and latency for the decomposed standard C-implementationare given in the next two columns followed by the area and latency after the implementa-tion is mapped to a library which contains generalized C-elements. Area is reported as theimplementation's transistor count. Latency is the longest delay through a block of logic gen-erating an output transition driving a fanout of 4, and it is reported normalized to the delayof a single inverter (about 300ps for 0:8�m CMOS process at nominal conditions). Here, we

CHAPTER 5. TECHNOLOGY MAPPING 92Table 5: Technology mapping results.# of AND/OR/C gC Library# of Gates to Area Latency Area Latency IterExample Gates Decompose (xtors) (inv) (xtors) (inv) (num)tsbm (4) 15 1 122 8.1 70 4.9 1tsbm (3) 15 1 122 8.1 70 4.9 1tsbm (2) 15 3 154 7.2 87 5.7 25SELopt (4) 11 0 66 5.3 45 3.8 0SELopt (3) 11 2 70 5.3 53 3.8 1SELopt (2) 11 4 108 8.5 67 4.2 3MMU (4) 27 4 186 5.8 132 5.2 14see that being able to map the implementations to generalized C-elements produces morethan a 30 percent improvement in both area and delay. Finally, the number of iterationsnecessary to decompose the high-fanin gates is shown. In all case, the decompositions arecompleted in a reasonable number of iterations.

CHAPTER 5. TECHNOLOGY MAPPING 93AppendixThe decomposition procedure has been automated within ATACS. After synthesis, the result-ing implementation is checked to see if it requires high-fanin gates. The maximum allowedgate size is set by the command maxsize. When high-fanin gates are detected, the commandbreakup can be used to run the decomposition procedure. The upper bound of the timingconstraint which is added for new rules on the new signals added is set using the commandgatedelay. The search of the decomposition space can be done both automatically or manu-ally, set by the command manual. When the decomposition procedure is done manually, itprompts the user to input the decomposition to try for each gate being decomposed. Thevalue of the decomposition determines which signals are to be in the extracted set. For aproduction rule [�s : (a0&a1& : : :an)], the literal ai is included in the extracted set if thevalue of the decomposition AND'ed with 2i is true. For each decomposition, the procedure�rst generates a new timed ER structure which describes the new orbital net and stores itto the �le named h�lenameiBRK.er. Synthesis is applied to this new structure, and if thecircuit no longer has high-fanin gates, the procedure terminates. Otherwise, the procedureattempts a new decomposition. If no decomposition is found that breakups all gates withone new signal for each high-fanin gate, then the procedure takes the best decomposition itfound so far and attempts to decompose it by adding another new signal. This procedurerepeats until a decomposition is found or the maximum gate size is no longer decreasing.

Chapter 6Design ExamplesExample is always more e�cacious than precept.|Samuel JohnsonThis chapter describes three examples in detail. The �rst is a controller for a fully asyn-chronous memory management unit (MMU) which is used to illustrate that signi�cantimprovements in circuit complexity can be achieved using timing constraints over tradi-tional speed-independent design methods. The second design is an asynchronous DRAMcontroller which interfaces with a synchronous environment. The resulting implementationis compared with a synchronous implementation designed using the synchronous synthesispackage within Berkeley's SIS. Considering the clock as just another input, synchronouscircuits can also be designed using our methodology. The last example is therefore a syn-chronous design: a two-bit counter.6.1 MMU ControllerThe MMU is designed for use with a 16-bit asynchronous microprocessor [45], and theoriginal implementation was derived using Martin's synthesis method [50]. The basic op-eration of the MMU is to convert a 16-bit memory address to a 24-bit real address. Thereare six possible cycles that the MMU controller can enter, depending on data from theenvironment. The 6 cycles can be independently designed and merged together to get theoverall implementation. For simplicity of presentation, the �rst subsection describes onlythe design of one cycle: the memory data load (MDl) cycle. The next subsection presentsthe complete implementation of the MMU controller.94

CHAPTER 6. DESIGN EXAMPLES 956.1.1 The Memory Data Load CycleA simpli�ed block diagram is shown in Figure 48 in which only signals involved in the MDlcycle are depicted.
MMU

Controller

Bo Bi

RAo RAi

MDli

MDlo

MSlo

MSli
Micro-

Processor

Memory

Interface

Address

Comparator

Segmentation

Register
8

16
Memory
Address 16

Figure 48: Block diagram for the MDl cycle of the MMU controller.The high-level CSP speci�cation for the memory data load cycle is:�[MDl! (RA k B);MSl;MDl]This speci�cation is initially transformed into the following handshaking expansion:�[[MDli ^ :RAi];RAo "; [:Bi];Bo "; [RAi ^ Bi ^ :MSli];MSlo "; [MSli];MDlo ";RAo #;Bo #; [:MDli];MSlo #;MDlo #];which can be converted to the constraint graph shown in Figure 49.The transformation from a CSP speci�cation to a handshaking expansion is not unique.A more concurrent constraint graph shown in Figure 50 also satis�es the high-level CSPspeci�cation. This speci�cation is simply a reshu�ing [44] of the earlier one. This reshuf-
ing is not considered in [50] because it results in a complete state coding violation [17].This means that the more concurrent speci�cation cannot be implemented without addingstate variables. Adding state variables not only changes the speci�cation, but can also addextra circuitry and/or delay to the implementation. This cost often outweights the bene�t

CHAPTER 6. DESIGN EXAMPLES 96
RAo↑ Bo↑

RAi↑ Bi↑

MSlo↑

MSli↑

MDlo↑

MDli↓

MDlo↓

Bi↓

Bo↓RAo↓

RAi↓

MSlo↓

MSli�↓

MDli↑

Figure 49: The cyclic constraint graph for the unoptimized MDl cycle.of the higher degree of concurrency. This particular problem can also be solved by addingpersistence rules, but this can reduce the concurrency in the speci�cation. If conservativetiming constraints are also added, the reduced state graph of the more concurrent speci�ca-tion shown in Figure 50 does not have a complete state coding violation, and thus, it can beimplemented without adding state variables or persistence rules. To make the speci�cationin Figure 50 persistent, three arcs are added to the constraint graph as shown in Figure 51;the speci�cation can now be implemented speed-independently. As shown later, the speed-independent implementation is still more complex than the original implementation derivedfrom the speci�cation in Figure 49.A speed-independent and a timed implementation of the speci�cation shown in Figure 51are compared. For the timed implementation, the timing constraints used are depicted inFigure 51. The lower bound of the timing constraint on MDli " states that the processordoes not issue memory requests faster than every 30ns. The lower bound of the timingconstraint on MSli " states that the DRAM access time takes at least 30ns. Both of theirupper bounds are in�nite since the processor could choose never to do a load, or the interfacecould choose never to process the request. The reseting of the acknowledgement (i.e.,MDli #and MSli #) is assumed to be somewhat faster, and must occur within 5 to 30ns of the resetof the request. The other numbers were obtained from SPICE simulations of the datapath

CHAPTER 6. DESIGN EXAMPLES 97
RAo↑ Bo↑

RAi↑ Bi↑

MSlo↑

MSli↑

MDlo↑

MDli↓

MDlo↓

Bi↓

Bo↓RAo↓

RAi↓

MSlo↓

MSli�↓

MDli↑

Figure 50: The cyclic constraint graph for the optimized MDl cycle.
RAo↑ Bo↑

RAi↑ Bi↑

MSlo↑

MSli↑

MDlo↑

MDli↓

MDlo↓

Bi↓

Bo↓RAo↓

RAi↓

MSlo↓

MSli�↓

MDli↑

[30,∞]

[30,∞]

[5,30]

[5,30]

[2,9][2,9] [2.5,13] [2.5,13]

All unmarked
rules have timing
constraint [0,1].Figure 51: The cyclic constraint graph for the persistent MDl cycle.

CHAPTER 6. DESIGN EXAMPLES 98circuitry for a 0:8�m CMOS process. The comparator, denoted Bi, has a delay of between2:5 to 13ns, and the registers, denoted RAi, have a delay of between 2 to 9ns depending ontemperature, voltage, and processing variations. All output signals have a delay of 0 to 1nswhere 1ns was found to be the maximum delay of the gates in the library used.In the MMU speci�cation, there are �ve events with multiple rules enabling them:RAo ", Bo ", MSlo ",MSlo #, and MDlo #. Timing analysis determines that at least one ruleassociated with each event is redundant. In all, 6 of the 15 rules on output signals in theoriginal speci�cation are redundant. This includes the 3 persistence rules. To determinewhich context signals must be added, the �rst step is to determine the reduced state graphand the enabled cube for each signal using the timing constraints. A state graph generatedwithout any timing constraints results in 92 states while the reduced state graph only has22 states. Using the reduced state graph, the timed implementation needs 5 context signalsas opposed to 7 needed for the speed-independent implementation.After adding context signals to our original speci�cation, a speed-independent imple-mentation requires 22 literals (note that we de�ne a literal to be a signal in a guard) asshown in Table 6. The timing constraints reduce the circuit to only 10 literals. Thus, ourcircuit complexity is reduced by over 50 percent using conservative timing constraints. Ageneralized C-implementation for both is shown in Figure 52. Note that this reduction ispossible not only because of removing redundant literals, but also because the gate neededfor implementing RAo and Bo can now be shared after the optimizations.Speed-Independent PRs Simpli�ed Timed PRsMSlo ^MSli 7! MDlo " MDli ^MSli 7! MDlo ":MSlo ^ :MDli 7! MDlo # :MDli 7! MDlo #:MDlo ^ :MSlo ^ :RAi ^MDli 7! RAo " :MDlo ^ :MSlo ^MDli 7! RAo ";Bo "MSlo 7! RAo # MSlo 7! RAo #;Bo #:MDlo ^ :MSlo ^ :Bi ^MDli 7! Bo "MSlo 7! Bo #RAo ^ Bo ^ :MSli ^ RAi ^ Bi 7! MSlo " RAi ^ Bi 7! MSlo ":RAo ^ :Bo ^MDlo 7! MSlo # MDlo 7! MSlo #Table 6: Production rules for speed-independent and timed circuits for the MDl cycle.

CHAPTER 6. DESIGN EXAMPLES 99
gC

gC

gC

MDli
MSli

RAi
Bi

MDlo

MSlo

RAo
Bo

+

−
++

+

+

(a) (b)

gC

gC

gC

gC

MDli
MSli

RAi
Bi

MDlo

MSlo

RAo

Bo

−
+

−+++

+

++
+

++Figure 52: (a) Timed and (b) speed-independent implementations for the MDl cycle.6.1.2 Complete MMUThe speci�cation for the complete MMU controller process is shown in Figure 53. Fromthis speci�cation, our synthesis procedure obtains a reduced state graph which contains187 states. From the reduced state graph, the procedure obtains a gate-level timed circuitimplementation with 62 literals depicted in Figure 54(a) using only basic gates with atmost 3-inputs. For a gate-level speed-independent circuit implementation, the state graphexplodes to 23,296 states resulting in the circuit implementation shown in Figure 54(b) thatis not only signi�cantly larger, 114 literals, but also signi�cantly slower since it requires gatesas large as 8 inputs!

CHAPTER 6. DESIGN EXAMPLES 100
module MMU;process control;� [[[MDli "]! (([RAi #];RAo ") jj ([B1i # _ B2i # _ B3i #];Bo ")); [RAi "];[[B1i " ^ LSRi #];! LSRo "; (RAo # jj Bo #); [LSRi "];MDlo ";LSRo #; [MDli #];MDlo #j [B2i " ^ LSWi #];! LSWo "; (RAo #; jj Bo #); [LSWi "];MDlo ";LSWo #; [MDli #];MDlo #j [B3i " ^ MSli #];!MSlo "; (RAo #; jj Bo #); [MSli "];MDlo ";MSlo #; [MDli #];MDlo #]j [MDsi "]! (([WAi #];WAo ") jj ([B1i # _ B2i # _ B3i #];Bo ")); [WAi "];[[B1i " ^ SSRi #];! SSRo "; (WAo # jj Bo #); [SSRi "];MDso "; SSRo #; [MDsi #];MDso #j [B2i " ^ SSWi #];! SSWo "; (WAo #; jjBo #); [SSWi "];MDso "; SSWo #; [MDsi #];MDso #j [B3i " ^ MSsi #];!MSso "; (WAo #; jj Bo #); [MSsi "];MDso ";MSso #; [MDsi #];MDso #]]]endprocessetc.endmoduleFigure 53: Part of the timed HSE speci�cation for the complete MMU controller.

CHAPTER 6. DESIGN EXAMPLES 101

(a) (b)

MDli
MDlo

LSRo
LSWo
MSlo

C

RAi
B1i
RAo

LSRo

MDlo

C

RAi
B3i

MSlo

MDlo

C

MDli

MDli

LSRi

MSli
MDlo

MDli

MDli
LSWi

MDsi
MDso

SSRo
SSWo
MSso

RAo

WAo

Bo

C

MDsi

MDsi

SSRi

MSsi
MDso

MDsi

MDsi
SSWi

C

RAi
B2i
RAo

LSWo

MDlo

C

WAi
B1i
WAo

SSRo

MDso

C

WAi
B3i

MSso

MDso

C

WAi
B2i
WAo

SSWo

MDso

C

RAi
B1i

RAo
LSRo

MDlo

Bo

LSRi

LSRi

MSli MDlo

LSWi

C

RAo
Bo

LSRo

RAo
Bo

LSWo

RAo
Bo

MSlo

LSRo
LSWo
MSlo

MDli

C

RAi

RAo

LSRo
LSWo
MSlo

MDli

MDlo

LSRo
LSWo
MSlo

BoC
LSRoLSWoMSloSSRo
SSWoMSso

LSRoLSWoMSlo

SSRo
SSWoMSso

MDlo

MDso

B1iB2iB3i

B1iB2iB3i

MDli

MDsi

C

WAi

WAo

SSRo
SSWo
MSso

MDsi

MDso

SSRo
SSWo
MSso

SSRi

MSsi MDso

SSWi

C

WAo
Bo

SSRo

WAo
Bo

SSWo

WAo
Bo

MSso

SSRo
SSWoMSso

MDsi

C

RAi
B2i

RAo
LSWo

MDlo

Bo

LSWi

C

RAi
B3i

RAo
MSlo

MDlo

Bo

MSli

C

WAi
B1i

wAo
SSRo

MDso

Bo

SSRi

C

WAi
B2i

WAo
SSWo

MDso

Bo

SSWi

C

WAi
B3i

WAo
MSso

MDso

Bo

MSsi

LSRi

LSWi

MSli

SSRi

SSWi

MSsi

LSRo

LSWo

MSlo

SSRo

SSWo

MSsoFigure 54: Gate-level (a) timed and (b) speed-independent circuits for the MMU controller.

CHAPTER 6. DESIGN EXAMPLES 1026.2 DRAM ControllerThe DRAM controller is an interface between a synchronous microprocessor and a DRAMarray. Typically, a DRAM controller is implemented as a synchronous circuit. Since aDRAM controller must interface with a synchronous environment, it cannot be implementedas a speed-independent asynchronous circuit, but it can be implemented as a timed circuitthat satis�es certain timing constraints.A block diagram for the entire DRAM interface is shown in Figure 55. The DRAMcontroller was originally speci�ed using the burst-mode �nite-state machine representationshown in Figure 56 [58]. From the burst-mode speci�cation, we obtained the timed HSEspeci�cation shown in Figure 57. The DRAM controller has three possible modes of opera-tion: refresh, write, and read. The generalized C-implementation for the DRAM controlleris shown in Figure 58. Note that while some gates are shown as multi-level implementations,they are actually implemented with single complex gates such as the one for cas shown inFigure 59. This implementation is not hazard-free at the gate-level. The gate-level syn-thesis procedure produces the gate-level hazard-free timed circuit shown in Figure 60(a).While the two implementations have a di�erent structure, they are equivalent in terms ofliteral count (38 literals each) before optimizations, so there is little cost, if any, in achievinghazard-freedom at the gate-level. A synchronous implementation of the DRAM controllershown in Figure 60(b) is generated using Berkeley's synchronous synthesis program SIS[62]. Surprisingly, our timed design is about 40 percent smaller and 30 percent faster. Thisresult comes from the sequential don't-care information that is taken into account by theasynchronous nature of our synthesis procedure. There is also a signi�cant improvement inpower consumption since our timed design produces no spurious transitions.

CHAPTER 6. DESIGN EXAMPLES 103
selca

b

rfip

a
we

ras
cas

rfreq

asw
asr

c

dds

dtack

r/w
as
ds

rfack
rfclk

Column Addr

Row Addr

DRAM Addr

Refresh AddrRefresh Addr Counter

A
rb

iter

D
ela

y

D
R
A
M

C
o
n
tr
o
lle
r

M
U

X

IN
C

M
U

X

M
IC

R
O

P
R

O
C

E
S

S
O

R

D
R

A
M

 A
R

R
A

YFigure 55: Block diagram for a DRAM interface.
b↓

rfip↑

c↓

ras↓

 rfreq↓ rfreq↑
a↓

ras↑rfip↓

c↑a↑ b↑

a↓ asw↓

ras↓ dtack↓
we↓ selca↑

a↓

b↓ dds↓

cas↓

 dds↑ asw↑

ras↑
cas↑
we↑

dtack↑
selca↓

ras↓ dtack↓
selca↑

cas↓ ras↑
cas↑ dtack↑

selca↓

b↓ dds↑ asr↑dds↓
 asr↓

a↑ b↑Figure 56: The burst-mode speci�cation for the DRAM controller.

CHAPTER 6. DESIGN EXAMPLES 104module DRAM;process control;� [[[rfreq #]! r�p "; [c #]; ras #; [a # ^ b # ^ rfreq "]; (r�p # jj ras "); [a " ^ b " ^ c "]j [asw #]! ras #; [a #]; (dtack # jj we # jj selca "); [b # ^ dds #]; cas #;[asw " ^ dds "]; (ras " jj cas " jj dtack " jj we " jj selca #); [a " ^ b "]j [asr # ^ dds #]! ras #; [a #]; (dtack # jj selca "); [b #]; cas #;[asw " ^ dds "]; (ras " jj cas " jj dtack " jj selca #); [a " ^ b "]]]endprocessetc.endmoduleFigure 57: Part of the timed HSE speci�cation of the DRAM controller.
gC

¬ rfreq

b

rfip

−

gC

asw

a

we

−
dds +

C

C
C

ras

cas
dtack

selca

¬ b

¬ rfreq
¬ c

¬ asw
¬ asr
¬ dds

¬ a

¬ a

¬ asw

¬ asr

asw

asr
dds

¬ asr
¬ b

¬ asw
¬ dds

¬ b

asw

asr
dds

rfreq

asw

asr
dds

dtack

 c

Figure 58: Overall implementation of the DRAM controller.

CHAPTER 6. DESIGN EXAMPLES 105
¬ asr

¬ b

¬ asw

¬ dds

¬ dds

¬ asw

¬ asr

weak

cas

Figure 59: Complex-gate implementation of the cas signal for the DRAM controller.
asw

dds

asw
we

a

asr

asw

asr

dds

dds

b

asw

dds

rfreq

c

dds

rfreq

rfip

ras
cas

selca

dtack

rfip

rfip

a ras

a

ras

we

cas

b

a

a

selca

cas

cas

b

(a) (b)

C

C

C

C

dds

asw

we

a

we

a
asr

dds

asw
asr
dds

rfreq

c

asr
dds

b

rfreq

b
c

rfip

ras

cas

selca

asw
b

b
asr

C

dtackFigure 60: (a) Timed and (b) synchronous circuits for a DRAM controller.

CHAPTER 6. DESIGN EXAMPLES 1066.3 Two-bit Synchronous CounterThe two-bit synchronous counter is speci�ed in Figure 61(a). Additional constraints, anal-ogous to setup times, are added to make the cyclic constraint graph strongly connected asshown in Figure 61(b). The complex gate implementation synthesized for the counter isshown in Figure 62(a). Upon closer inspection of the transistor-level diagram for this gateshown in Figure 62(b), we observe that the gates are actually typical synchronous latches,and the circuit can be redrawn as shown in Figure 62(c). This �nal implementation takes6 transistors for the logic and 16 for the latches. The critical path through the logic isan inverter, a pass gate, and a latch (approximately 2.5 inverter delays). Using SIS and astandard synchronous gate library, the implementation for the counter shown in Figure 63 isderived. This implementation uses 32 transistors and has a critical path through an inverterand 2 NAND gates and a latch (approximately 6 inverter delays).
ϕ↑/1

ϕ↑/2

ϕ↑/3

ϕ↑/4

ϕ↓/4

ϕ↓/1

ϕ↓/2

ϕ↓/3

C0
′↑/1

C0↑/1

C0
′↓/1 C1

′↑

C0↓/1 C1↑

C0
′↓/2 C1

′↓

C0↓/2 C1↓

C0
′↑/2

C0↑/2

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

ϕ↑

ϕ↑

ϕ↑

ϕ↑

ϕ↓

ϕ↓

ϕ↓

ϕ↓

C0
′↑

C0↑

C0
′↓ C1

′↑

C0↓ C1↑

C0
′↓ C1

′↓

C0↓ C1↓

C0
′↑

C0↑

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[19,21]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

(a) (b)Figure 61: The cyclic constraint graph speci�cation for a two-bit synchronous counter: (a)initial speci�cation and (b) �nal speci�cation.Our implementation is more than 30 percent smaller and more than twice as fast as theone produced using the synchronous synthesis tool SIS. Comparing the implementations, we�nd that both implement C 00 using a single inverter. The di�erence is in the implementation

CHAPTER 6. DESIGN EXAMPLES 107
ϕ

C0
′

C1
′

C1

C0

C
C0

ϕ
¬ C1

C1
′

ϕ
C1C0

ϕ

¬ ϕ

C0

C1

¬ C0

C1
′

ϕ

¬ ϕ
C0 C0

′

C
C0

′

ϕ

ϕ

¬ C0

C0

(a)

(b)

(c)

weak

weakFigure 62: Complex-gate implementation of a two-bit synchronous counter.
ϕ

C0
′

C1
′

C1

C0

weak

weakFigure 63: Implementation of a two-bit synchronous counter derived using SIS.

CHAPTER 6. DESIGN EXAMPLES 108of C 01. Our timed circuit implementation makes use of the information that C 01 only changesin states where C0 is high. Thus, it is implemented using an inverter and a pass gate whichis gated on C0. SIS's implementation, on the other hand, does not take into account thesequencing of the states. For example, if a sequence of states in which the counter iscounting 00-11-01-10 were possible, this circuit would generate the correct next state giventhe current state. This extra logic, however, is unnecessary since this counter always goesthrough the states in the same order: 00-01-10-11-00,etc.

Chapter 7Veri�cation Prove all things; hold fast that which is good.|BibleVeri�cation is the process of checking if the circuit built satis�es its speci�cation. There aremany reasons to use veri�cation. First, even if a circuit is automatically synthesized usinga formal, systematic synthesis procedure, such as ours, veri�cation provides a double-checkto discover bugs in the synthesis tools. Second, since timing assumptions must be made atthe outset to synthesize a timed circuit, veri�cation can be used to check these assumptionsafter the circuit has been synthesized. Third, designers often perform hand-optimizationsto synthesized circuits, and these optimizations can be checked using veri�cation. Finally,veri�cation can be used to measure the robustness of a design to changes in design parame-ters. Although a circuit may be synthesized for one set of bounded delays, it may still workwhen some of the delay bounds change.Our veri�cation procedure requires both a speci�cation and circuit implementation ei-ther given in or translated to an orbital net representation. The orbital net for the speci�-cation is mirrored (i.e., inputs and outputs are swapped) [24] and composed with the orbitalnet for the implementation. The state space is then explored using the partial order timinganalysis algorithm described earlier. If in the process of exploring the state space a failureis detected, an error trace is returned, otherwise the timed circuit is found to implement itstimed speci�cation. 109

CHAPTER 7. VERIFICATION 1107.1 Behavioral SemanticsIn order to verify our timed circuits, we adopt as our behavioral semantics trace theory asde�ned by Dill [24] which originated with Rem, Snepscheut, and Udding [59]. We providestructural constructions and syntactic shorthands for labeled safe Petri nets that correspondto the behavioral semantics operations. Burch [14] extended trace theory semantics totimed circuits; we extend this work with an operational formalism that allows timing in thespeci�cation, and thus hierarchical timed veri�cation.Dill's trace theory is based on sequences of actions, but our nets allow transitions tobe labeled with sets of actions. A trace theory based on sequences of sets of actions yieldsa conformance relation that distinguishes, for instance, interleaved and concurrent actions.In addition, composing a net that interleaves a pair of actions with another net that hasthose same actions labeling one transition may lead to an unintended deadlock. We do notattempt to resolve the complexities that arise in use of such a trace theory. Instead, wede�ne conservative structural conditions on the use of labels consisting of sets of actionsthat allow us to use Dill's trace theory. For instance, we cannot perform veri�cation usingtraditional trace theory on the instantaneous AND function block shown in Figure 64(b).However, when we compose that model with the simple bu�er given in Figure 64(c) andhide the internal wire, the resulting net contains at most a single action for each transitionand traditional trace theory can be applied.
b↑

a↑,c↑

b↓,c↓a↓

a↑

b↑,c↑

a↓,c↓

b↓

c↓
d↓

c↑d↑

(b) (c)

〈2, 4〉b

〈2, 4〉b

〈2, 4〉

(a)

a

b
c dFigure 64: (a) AND gate with inputs a and b, and output d; (b) orbital net for functionalbehavior; (c) delay bu�er with input c, output d, and delay of h2; 4i.

CHAPTER 7. VERIFICATION 111With these semantics, untimed constructions for receptiveness and synchronization ap-ply unchanged to the timed case. Thus, implementing veri�cation of trace structure confor-mance is straightforward. Determining whether an implementation conforms to a speci�ca-tion is reduced to determining if any of a speci�c set of failure transitions can be enabled.In addition, the trace theory operation of mirroring is also preserved, allowing hierarchicalveri�cation.7.2 Generating the Orbital Net RepresentationsTo verify that our synthesized timed circuits implement their timed speci�cations, our ver-i�cation procedure begins with the timed HSE speci�cation and the implementation givenas a netlist of basic gates. To translate the speci�cation to an orbital net representation,the same procedure described earlier is used except that the timing requirement for eachbehavior place in the preset of an output transition is changed to a constraint place withtiming requirement h0;1ic. These constraints must be satis�ed by the timed circuit im-plementation. Part of the speci�cation orbital net for the SEL is shown in Figure 65.
selo↑

selo↓

sel1i↓

sel1i↑ sel2i↑

selo↓

sel2i↓

〈40, 260〉b

〈2, 40〉b〈2, 40〉b

out2o↑out1o↑

xferi↑

Figure 65: Part of the speci�cation orbital net for the SEL.For each gate in the implementation, an orbital net is constructed corresponding to aninstantaneous function block such as the one given for the AND gate in Figure 64(b). This

CHAPTER 7. VERIFICATION 112net is composed with a delay element such as the one in Figure 64(c) with the behavioraltiming requirement set by the delay given in the gate library. Each orbital net in theimplementation is composed with the other orbital nets as dictated by the connections inthe netlist.7.3 Reporting FailuresTo determine if a timed circuit implements its timed speci�cation, the reachable state spaceis found using the partial order timing algorithm for the orbital net obtained by composingthe implementation with its mirrored speci�cation. If while exploring the state space afailure is detected, a sequences of transitions found using a depth-�rst search is reportedthat demonstrates the failure. This sequence, however, may be quite long, so after reportingthe failure the procedure attempts to �nd a shorter sequence using a breadth-�rst search.Returning to the SEL, if we replace the standard C-implementation of out2o with the sum-of-products implementation as shown in Figure 66, it fails veri�cation, and the followingfailure trace is reported:xferi "; u26 "; selo "; datao "; sel2i "; datai "; u26 #;u32 "; out2o "; u29 "; selo #; sel2i #; u32 #; out2o #
out2i

datai
sel2i

out2o
datao

xfero

u32

u33

u34
C

C C Cdatao selo

xferi

xferi

xferi
datai

datai
sel1i

out1i

out1i

out2i xfero

xfero
xfero

xfero

xferi

datao

out1o

out1o

out2o

out1i
out2i

u17

u18

u24

u26

u27 u29

u30

u31Figure 66: Implementation of the SEL which fails veri�cation.

CHAPTER 7. VERIFICATION 1137.4 Veri�cation ResultsThe veri�cation procedure described in the previous section has been automated in the toolOrbits written by Tom Rokicki. This tool has been incorporated into the design systemfor timed circuits ATACS. Experimental results are given in Table 7 which were run on anHP9000/735 with 144 megabytes of memory using CScheme 7.3. The left four columnsindicate values that are the same for geometric and partial order timing. The startup timeis the time required to parse the input and construct the appropriate orbital net. Thenumber of net nodes is the sum of the places and transitions in the resulting orbital net.The third column gives the number of untimed states. The fourth column gives the numberof discrete states, after all timing parameters are divided by their greatest common divisor.The next four columns give the number of geometric regions and the run time in secondsfor veri�cation using standard geometric timing and partial order timing, respectively.The �rst half of Table 7 consists of the automatically synthesized gate-level timed circuitsdescribed above. First, we �nd that the number of discrete states can be quite large makingdiscrete-time veri�cation di�cult, if not impossible. Veri�cation of these examples usingpartial order timing is also more e�cient than the geometric timing approach. Especially inthe case of the DRAM controller where the veri�cation time is improved by over an orderof magnitude.
din

reqin

ackin

dout

reqout

ackoutFigure 67: Seitz queue element.The second half of the table consists of other timed circuits and systems that exhibit ahigh degree of concurrency. For example, the seitz queue element is pictured in Figure 67;seitz2 is two connected copies of this circuit. The kyy examples [80] have thirty-sevengates and timing parameters given to three signi�cant digits. Where the examples ran

CHAPTER 7. VERIFICATION 114out of time or space using the geometric method, often the veri�cation was far from done.For the seitz2 example, after one hour of CPU time, only 1,404 of the 4,572 untimedstates have been seen, yet 473,202 distinct geometric regions have been encountered. Oneparticular untimed state has 13,275 distinct geometric regions at this point. Partial ordertiming for this example �nds the entire state space as 5,820 geometric regions in one halfminute of CPU time. Table 7: Veri�cation results.Startup Net Untimed Discrete Geometric Partial orderExamples time nodes states states regions time regions timeSEL 2.59 770 271 6.16e5 582 1.91 358 1.76SEL2 2.26 616 96 2033 130 0.33 102 0.29MMU 5.94 2248 547 2.21e7 1163 5.22 583 2.03DRAM 3.83 1326 8093 1.17e6 70611 1492.97 8899 98.13TSBM 3.57 1464 305 49936 510 3.36 305 2.07adv3x40 0.05 6 1 68921 1.52e5 164.99 1 0.01adv4x40 0.03 8 1 2.83e6 out of memory 1 0.01adv50x40 0.27 100 1 4.36e80 out of memory 1 60.21phil3 0.19 149 144 27806 758 0.77 188 0.36phil4 0.22 197 1152 9.82e5 out of time 1541 6.98phil5 0.25 245 9840 3.47e7 out of time 14039 159.40seitz 0.41 355 344 2.92e13 3234 5.48 416 1.22seitz2 0.55 624 4572 5.48e19 out of memory 5820 29.79kyy5 2.46 1484 5266 >1e20 out of memory 6083 56.74kyy15 1.97 1484 18357 >1e20 out of memory 20250 321.47Time values are given in seconds. An entry of out of time indicates that the veri�cationdid not complete within two hours, and an entry of out of memory indicates that theveri�cation ran out of memory before completing.One more thing to consider from Table 7 is the ratio of the number of regions foundusing partial order timing to the number of untimed states. We �nd that partial ordertiming often �nds on average very close to one, and in all of our examples, no more thantwo geometric regions for every untimed state. This means that the partial order timingapproach is achieving a near optimal representation of the timed state space.

CHAPTER 7. VERIFICATION 115AppendixThe veri�cation procedure is implemented within the tool Orbits. After ATACS has synthe-sized a timed circuit implementation, it can be veri�ed by Orbits using the command verifywithin ATACS. This command produces a �le which includes both an orbital net speci�cationand a description of the timed circuit implementation. If the timed circuit is gate-level, thedelay information for the library of basic gates is read in from the �le library.ver. AfterOrbits has completed the veri�cation, it returns to ATACS and reports that either thatit completed successfully or that the veri�cation failed. If it fails, a sequence of signaltransitions which exhibit the error are reported to the user.

Chapter 8ConclusionsThe purpose of a �sh trap is to catch �sh,and when the �sh are caught, the trap is forgotten;the purpose of a rabbit snare is to catch rabbits,and when the rabbits are caught the snare is forgotten;the purpose of words is to convey ideas,and when the ideas are grasped, the words are forgotten.|Zhuang Zi8.1 SummaryThis thesis describes a methodology for the automatic synthesis and veri�cation of gate-level timed circuits. To specify timed circuits, we created the timed HSE language whichincludes constructs for specifying sequencing, concurrency, and choice. The semantics ofthis speci�cation language are de�ned using a new formal model, timed ER structures. Wedeveloped two timing analysis algorithms which can be used to obtain the reachable statespace for the speci�cation of the circuit being designed. The �rst is a heuristic algorithmfor deterministic speci�cations. The second begins with a more general orbital net rep-resentation that is automatically obtained from the timed HSE speci�cation, and it usesgeometric regions and partial orders to e�ciently represent and explore the timed statespace. We also presented e�cient algorithms for the synthesis of timed circuits which ob-tain a hazard-free timed circuit implementation using only basic gates, facilitating the useof semi-custom components. After obtaining an initial basic gate implementation, we mapit to the given gate library using a technology mapping procedure based on resynthesis and116

CHAPTER 8. CONCLUSIONS 117an iterative search guided by timing information. We demonstrated the e�ectiveness of thetimed circuit design procedure on several practical examples, and our results indicate thatour timed circuit implementations are signi�cantly smaller and faster than those producedby other asynchronous and synchronous design methodologies. Finally, we veri�ed all ourtimed circuits, and we showed that partial order timing veri�cation can handle much larger,more concurrent examples than the standard discrete or geometric methods. By applyingsystematic methods that incorporate timing into asynchronous circuit design, our proce-dure produces both e�cient and reliable implementations opening the door to the use ofasynchronous circuits in domains previously dominated by synchronous circuits.8.2 Future WorkWhile we believe that the results in this thesis show that timed circuits are a very promisingalternative design style, there is much work that needs to be done in order to make it a trulyviable alternative to existing synchronous design methods. This section brie
y describes theareas that we believe to be the most important research problems which must be addressed.8.2.1 Speci�cationAlmost all commercial design tools for the simulation and synthesis of synchronous digitalsystems employ standard hardware description languages (either Verilog or VHDL). Cur-rent asynchronous speci�cation methodologies (including ours described in Chapter 2) usenon-standard languages such as CSP [44], OCCAM [13], or Tangram [69]. In order to takeadvantage of the excellent repertoire of existing tools and to make the transition to asyn-chronous design easier for designers, we believe that it is necessary in the future to developmethods and tools which use standard HDL's.8.2.2 CompilationAfter specifying a design at a behavior-level in a standard HDL, it must be compiled toa register-transfer-level (RTL) description, such as our timed HSE description. For everybehavioral-level speci�cation, however, there are a multitude of possible RTL descriptions,which make �nding the optimal RTL description quite di�cult. First, there are manyways to decompose a design into smaller, synthesizable blocks. Decomposition determinesboth the amount of global concurrency and the degree of pipelining, which are two major

CHAPTER 8. CONCLUSIONS 118factors in determining overall performance. Second, the asynchronous communicationsbetween blocks can be implemented in many ways including two-phase and four-phasehandshaking. More aggressive communication methods can also be employed in a timedcircuit that use only one wire for requests and infer the acknowledgment from circuit delays,analogous to synchronous communication. Finally, there are many possible alternatives tosolving the state assignment problem. One method to do this is to automatically addstate variables by extending a technique such as the one described in [78] to timed circuits.In addition, reshu�ing of the placement of handshaking signals [44] or making tightertiming assumptions can also solve the state assignment problem by removing unnecessaryconcurrency.8.2.3 Technology Mapping and Module GenerationAs we saw in Chapter 5, signi�cant improvements in area and delay can be achieved usinggeneralized C-elements rather than standard-cells. We have found that many generalizedC-element implementations can be mapped to precharged gates which are already found inexisting cell libraries. Also, since generalized C-elements have a regular geometry, they canbe automatically created using relatively straight-forward module generation techniques, asdemonstrated by Alain Martin of Caltech. To get high-performance designs, we believe it isnecessary to both explore mapping generalized C-element designs to cells found in existinglibraries, as well as, developing techniques to automatically generate new cells.8.2.4 Veri�cationIn Chapter 7, we successfully veri�ed all our timed circuit designs by using timing analy-sis techniques which e�ciently abstract the timed state space, but state explosion of theuntimed state space is still quite computationally challenging. Comparing the number ofuntimed states in veri�cation with those found in synthesis, we see that the internal signalsin the circuit implementations cause a signi�cant increase in the state space size. To addressthis problem, we believe that the internal signal behavior can be abstracted by extendingthe cube approximation technique that is successfully used to reduce the complexity ofverifying speed-independent circuits [4].

CHAPTER 8. CONCLUSIONS 1198.2.5 Asynchronous DatapathsThere are currently two major techniques for asynchronous datapath design, bundled-dataand dual-rail. In the bundled-data approach a signal is transmitted with the data thatindicates when the data is valid, much like the clock signal in a synchronous design. Whilethis approach allows existing synchronous datapaths to be used, the need to delay the datavalid for the worst-case delay precludes taking advantage of average-case, data-dependentdelays. To achieve average-case performance, it is necessary to detect the completion of anoperation. This is typically done by using dual-rail logic which uses two wires to encodeboth the positive and negative phase of the signal, as well as, when it is invalid. Fullydual-rail logic can have signi�cant area and delay overhead which can often outweigh theadvantage of average-case performance. For timed asynchronous datapath design, we believean approach that combines the advantages of both bundled-data and dual-rail is necessary.One technique that we would like to explore is using domino dual-rail logic which usesskewed cones of domino logic stages in which common paths have fewer logic stages thanless common paths. Dual-railed input signals ensure that the logic will be hazard-free, anddomino logic stages facilitate a short reset time.8.2.6 Interfacing with Synchronous DesignsDespite the advantages of asynchronous designs, they will not immediately replace all exist-ing synchronous designs due to existing design expertise, and they may never replace syn-chronous designs in many domains. Systems in the future will have a mixture of synchronousand asynchronous modules which will need to communicate at very high rates. Therefore,it is necessary to develop methods to specify and design these mixed-timed modules. Thisthesis demonstrates that the timed circuit methodology can be used for fully asynchronouscircuits, asynchronous circuits which interface with synchronous environments, and evensynchronous circuits. While more research is necessary, we believe that the timed circuitdesign methodology will facilitate a smooth transition to the design of mixed-timed systems.

Bibliography[1] R. Alur. Techniques for Automatic Veri�cation of Real-Time Systems. PhD thesis,Stanford University, August 1991.[2] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implementationof three algorithms for timing veri�cation based on automata emptiness. In Proceedingsof the Real-Time Systems Symposium, pages 157{166. IEEE Computer Society Press,1992.[3] T. Amon, H. Hulgaard, G. Borriello, and S. Burns. Timing analysis of concurrentsystems. Technical Report UW-CS-TR-92-11-01, University of Washington, 1992.[4] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng. E�cient veri�cation of determinatespeed-independent circuits. In Proceedings IEEE 1993 ICCAD Digest of TechnicalPapers, pages 261{267, 1993.[5] P. A. Beerel and T. H.-Y. Meng. Semi-modularity and testability of speed-independentcircuits. INTEGRATION, the VLSI journal, 13(3):301{322, September 1992.[6] P. A. Beerel and T. H.-Y. Meng. Logic transformations and observability don't caresin speed-independent circuits, 1993. In collection of papers of the ACM InternationalWorkshop on Timing Issues in the Speci�cation of and Synthesis of Digital Systems.[7] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Automatic synthesis of gate-levelspeed-independent circuits. Technical Report CSL-TR-94-648, Stanford University,Novermber 1994.[8] B. Berthomieu and M. Diaz. Modeling and veri�cation of time dependent systemsusing time petri nets. IEEE Transactions on Software Engineering, 17(3), March 1991.120

BIBLIOGRAPHY 121[9] G. Borriello and R. H. Katz. Synthesis and optimization of interface transducer logic.In Proceedings IEEE 1987 ICCAD Digest of Papers, pages 274{277, 1987.[10] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli. LogicMinimization Algorithms for VLSI Synthesis. Kluwer Academic, 1984.[11] R. K. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In Proceed-ings IEEE 1989 ICCAD Digest of Technical Papers, pages 316{19, 1989.[12] E. Brunvand. Translating Concurrent Communicating Programs into AsynchronousCircuits. PhD thesis, Carnegie Mellon University, 1991.[13] E. Brunvand and R. F. Sproull. Translating concurrent programs into delay-insensitivecircuits. In International Conference on Computer-Aided Design, ICCAD-1989. IEEEComputer Society Press, 1989.[14] J. R. Burch. Trace Algebra for Automatic Veri�cation of Real-Time Concurrent Sys-tems. PhD thesis, Carnegie Mellon University, 1992.[15] S. M. Burns. Automated compilation of concurrent programs into self-timed circuits.Technical Report Caltech-CS-TR-88-2, California Institute of Technology, 1987.[16] S. M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhDthesis, California Institute of Technology, 1991.[17] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Speci�cations.PhD thesis, Massachusetts Institute of Technology, 1987.[18] T.-A. Chu. Private Communication, July 1991. Tam-Anh Chu is with Cirrus Logic.[19] T.-A. Chu. Synthesis of hazard-free control circuits from asynchronous �nite statemachine speci�cations. Journal of VLSI Signal Processing, 7(1/2):61{84, February1994.[20] A. Davis, B. Coates, and K. Stevens. The Post O�ce experience: Designing a largeasynchronous chip. In Proceedings of the Twenty-Sixth Annual Hawaii InternationalConference on System Sciences, pages 409{418. IEEE Computer Science Press, 1993.[21] M. E. Dean. STRiP: A self-timed RISC processor architecture. Technical report,Stanford University, 1992.

BIBLIOGRAPHY 122[22] M. E. Dean, D. L. Dill, and M. Horowitz. Self-timed logic using current-sensing com-pletion detection (CSCD). Journal of VLSI Signal Processing, 7(1/2):7{16, February1994.[23] D. L. Dill. Timing assumptions and veri�cation of �nite-state concurrent systems.In Proceedings of the Workshop on Automatic Veri�cation Methods for Finite-StateSystems, June 1989.[24] D. L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-IndependentCircuits. MIT Press, 1989.[25] D. W. Dobberpuhl, R. T. Witek, R. Allmon, R. Anglin, R. Bertucci, S. Britton,L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Hassoun, and G. Hoepp-ner. A 200 mhz 64 bit dual-issue cmos microprocessor. IEEE Journal of Solid-StateCircuits, 27(11):1155{1167, November 1992.[26] J. C. Ebergen. Translating Programs into Delay-Insensitve Circuits. PhD thesis, Eind-hoven University of Technology, 1987.[27] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelinedARM. In T. Yanagawa and P. A. Ivey, editors, Proceedings of VLSI 93, pages 5.4.1{5.4.10, September 1993.[28] A. Grasselli and F. Luccio. A method for minimizing the number of internal states inincompletely speci�ed sequential networks. IEEE Transactions on Electronic Comput-ers, pages 350{359, June 1965.[29] N. Halbwachs. Delay analysis in synchronous programs. In Costas Courcoubetis, editor,Computer Aided Veri�cation, pages 333{346. Springer-Verlag, 1993.[30] S. Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,83(1):69{93, January 1995.[31] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for real-time systems. In Proceedings of the 7th Symposium Logics in Computers Science. IEEEComputer Society Press, 1992.[32] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In ICALP92: Automata, Languages, and Programming, pages 545{547. Springer-Verlag, 1992.

BIBLIOGRAPHY 123[33] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, UK.LTD., Englewood Cli�s, New Jersey, 1985.[34] D. A. Hu�man. The synthesis of sequential switching circuits. J. Franklin Institute,March, April 1954.[35] H. Hulgaard and S.M. Burns. Bounded delay timing analysis of a class of CSP programswith choice. In Proc. International Symposium on Advanced Research in AsynchronousCircuits and Systems, pages 2{11, November 1994.[36] S. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its ap-plication to the minimization of boolean relations. In IEEE ICCAD Digest of TechnicalPapers, pages 417{420, 1992.[37] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Basicgate implementation of speed-independendent circuits. In Proc. ACM/IEEE DesignAutomation Conference, pages 56{62, June 1994.[38] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Synthesis of hazard-free asyn-chronous circuits with bounded wire delays. IEEE Transactions on Computer-AidedDesign, 14(1):61{86, January 1995.[39] L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-Vincentelli. Solving the stateassignment problem for signal transition graphs. In Proc. ACM/IEEE Design Automa-tion Conference, pages 568{572. IEEE Computer Society Press, June 1992.[40] T. K. Lee. A General Approach to Performance Analysis and Optimization of Asyn-chronous Circuits. PhD thesis, California Institute of Technology, 1995.[41] H. R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporaluncertainty. Technical report, Harvard University, July 1989.[42] K.-J. Lin, J.-W. Kuo, and C.-S. Lin. Direct synthesis of hazard-free asynchronouscircuits from STGs based on lock relation and MG-decomposition approach. In Proc.European Design and Test Conference (EDAC-ETC-EuroASIC), pages 178{183. IEEEComputer Society Press, 1994.[43] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In W. J.Dally, editor, Advanced Research in VLSI, pages 263{278. MIT Press, 1990.

BIBLIOGRAPHY 124[44] A. J. Martin. Programming in VLSI: from communicating processes to delay-insensitiveVLSI circuits. In C.A.R. Hoare, editor, UT Year of Programming Institute on Concur-rent Programming. Addison-Wesley, 1990.[45] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovi�c, and P. J. Hazewindus. The designof an asynchronous microprocessor. In Decennial Caltech Conference on VLSI, pages226{234, 1989.[46] K. McMillan and D. L. Dill. Algorithms for interface timing veri�cation. In Interna-tional Conference on Computer Design, ICCD-1992. IEEE Computer Society Press,1992.[47] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messershmitt. Automatic synthesis ofasynchronous circuits from high-level speci�cations. IEEE Transactions on Computer-Aided Design, 8(11):1185{1205, November 1989.[48] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive mod-ules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale Inte-gration, pages 67{86. Computer Science Press, Inc., 1985.[49] C. J. Myers, P. A. Beerel, and T. H.-Y. Meng. Technology mapping of timed circuits.In Asynchronous Design Methodologies. IEEE Computer Society Press, May 1995.[50] C. J. Myers and A. J. Martin. The design of an asynchronous memory management.Technical Report CS-TR-93-30, California Institute of Technology, 1993.[51] C. J. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. In Inter-national Conference on Computer Design, ICCD-1992. IEEE Computer Society Press,1992.[52] C. J. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEETransactions on VLSI Systems, 1(2):106{119, June 1993.[53] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis and veri�cationof gate-level timed circuits. Technical Report CSL-TR-94-652, Stanford University,January 1995.

BIBLIOGRAPHY 125[54] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis of gate-leveltimed circuits with choice. In 16th Conference on Advanced Research in VLSI, pages42{58. IEEE Computer Society Press, 1995.[55] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura. TITAC: Design of aquasi-delay-insensitive microprocessor. IEEE Design & Test of Computers, 11(2):50{63, 1994.[56] S. M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhDthesis, Stanford University, Department of Computer Science, 1993.[57] S. M. Nowick and D. L. Dill. Synthesis of asynchronous state machines using a localclock. In International Conference on Computer Design, ICCD-1991. IEEE ComputerSociety Press, 1991.[58] S. M. Nowick, K. Y. Yun, and D. L. Dill. Practical asynchronous controller design. InInternational Conference on Computer Design, ICCD-1992. IEEE Computer SocietyPress, 1992.[59] M. Rem, J. L. A. van de Snepscheut, and J. T. Udding. Trace theory and the de�nitionof hierarchical components. In R. Bryant, editor, Third Caltech Conference on VLSI,pages 225{239. Computer Science Press, Inc., 1983.[60] T. G. Rokicki. Representing and Modeling Circuits. PhD thesis, Stanford University,1993.[61] T. G. Rokicki and C. J. Myers. Automatic veri�caton of timed circuits. In InternationalConference on Computer-Aided Veri�cation, pages 468{480. Springer-Verlag, 1994.[62] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,P.R. Stephan, R.K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequen-tial circuit synthesis. Technical Report UCB/ERL M92/41, University of California,Berkeley, May 1992.[63] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average power dissipation andrandom pattern testability of CMOS combinational logic networks. In ProceedingsIEEE 1992 ICCAD Digest of Papers, 1992.

BIBLIOGRAPHY 126[64] P. Siegel. Automatic Technology Mapping for Asynchronous Designs. PhD thesis,Stanford University, February 1995.[65] P. Siegel, G. DeMicheli, and D. Dill. Automatic technology mapping for generalizedfundamental-Mode asynchronous designs. In Proceedings of the 30th ACM/IEEE De-sign Automation Conference, 1993.[66] P.A. Subrahmanyam. What's in a timing discipline? considerations in the speci�cationand synthesis of systems with interacting asynchronous and synchronous components.In Hardware Speci�cation, Veri�cation and Synthesis: Mathematical Aspects. Springer-Verlag, 1990.[67] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720{738, 1989.[68] S. H. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-Interscience, 1969.[69] C.H. van Berkel and R. Saeijs. Compilation of communicating processes into delay-insensitive circuits. In International Conference on Computer Design, ICCD-1988.IEEE Computer Society Press, 1988.[70] K. van Berkel. Handshake Circuits: An Intermediary between Communicating Pro-cesses and VLSI. PhD thesis, Eindhoven University of Technology, 1992.[71] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and F. Schalij. Asyn-chronous circuits for low power: A DCC error corrector. IEEE Design & Test ofComputers, 11(2):22{32, Summer 1994.[72] P. Vanbekbergen. Synthesis of Asynchronous Controllers from Graph-Theoretic Spec-i�cations. PhD thesis, Katholieke Unviversiteit Leuven, September 1993.[73] P. Vanbekbergen, G. Goossens, and H. de Man. Speci�cation and analysis of timingconstraints in signal transition graphs. In Proceedings of the European Design Automa-tion Conference, 1992.[74] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man. A generalized state assignmenttheory for transformations on signal transition graphs. In Proc. International Conf.Computer-Aided Design (ICCAD), pages 112{117. IEEE Computer Society Press,November 1992.

BIBLIOGRAPHY 127[75] V. I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The Designof Aperiodic Logical Circuits in Computers and Discrete Systems. Kluwer AcademicPublishers, Dordrecht, The Netherlands, 1990.[76] T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang. A self-timed chip fordivision. In Paul Losleben, editor, Advanced Research in VLSI: Proceedings of the 1987Stanford Conference, pages 75{95. MIT Press, 1987.[77] G. Winskel. An introduction to event structures. In Linear Time, Branching Timeand Partial Order in Logics and Models for Concurrency. Noordwijkerhout, Norway,June 1988.[78] C. Y.-C. and B. Lin. Optimised state assignment for asynchronous circuit synthesis.In Asynchronous Design Methodologies. IEEE Computer Society Press, May 1995.[79] T. Yoneda, A. Shibayama, B. Schlinglo�, and E. M. Clarke. E�cient veri�cation of par-allel real-time systems. In Costas Courcoubetis, editor, Computer Aided Veri�cation,pages 321{332. Springer-Verlag, 1993.[80] K. Y. Yun. Private communication, 1993.[81] K. Y. Yun. Synthesis of Asynchronous Controllers for Heterogeneous Systems. PhDthesis, Stanford University, 1994.[82] K. Y. Yun and D. L. Dill. Unifying synchronous/asynchronous state machine synthesis.In Proceedings IEEE 1993 ICCAD Digest of Papers. IEEE Computer Society Press,1993.[83] K. Y. Yun, D. L. Dill, and S. M. Nowick. Synthesis of 3D asynchronous state machines.In International Conference on Computer Design, ICCD-1992. IEEE Computer SocietyPress, 1992.

